
The PDP-1D
27-Dec-2006

In the early days of DEC’s history, the boundary between standard and special
systems was fairly open, and the concept of architecture unknown. As a
struggling startup, DEC was willing to customize its products to the requirements
of its customers, and customers were willing to experiment as well.
Consequently, the PDP-1 was extended in multiple different ways, by DEC and
by customers, particularly to add time-sharing capabilities.

In 1964, DEC wrote up some of these extensions as the PDP-1D (the –1A was
the prototype, the –1B wasn’t built, and the –1C was the main production model),
but the PDP-1D was more a menu of possibilities than a fixed machine. Two
were built, serial #45 for BBN, and serial #48 for Stanford, but they differ in
important ways.

The PDP-1D tried to address certain key problems in the PDP-1 architecture:

• Missing operates and skips. Both of the augmented instructions had
unused bits, which seemed like a waste.

• Cumbersome character handling. Packing and unpacking characters was
a tedious business, involving extensive shifting and rotating of the AC and
IO registers.

• 1’s complement arithmetic. As floating point and other extended-precision
arithmetic representations increased in importance, the 1’s complement
arithmetic system became a real hindrance. 2’s complement was a better
representation but lacked hardware support.

• Protection. Time-sharing required basic protection mechanisms in the
hardware, to prevent users from damaging the time-sharing executive or
each other.

• Clock support. Time-sharing required a real-time clock to time jobs and
prevent any single user from monopolizing the machine.

• Multi-terminal support. Time-sharing required attaching multiple terminals
to the system.

The PDP-1D required the 16-channel sequence break system, and hardware
multiply/divide, as part of its configuration.

Additional Operates and Skips

The PDP-1D used up all the spare bits in both the skip group and the operate
group:

 644000 SNI skip if IO non-zero

 760040 LAI load (or) AC from IO

 760020 LIA load (or) IO from AC

 760060 SWP swap AC and IO

 770000 CMI one’s complement IO

The new skips and operates were present in both serial #45 and serial #48.

Character Handling

The PDP-1, like other 18b machines, used 6b characters, packed three per word.
Packing and unpacking characters was a tedious process, involving complex use
of AC and IO shifts. The PDP-1D added two new instructions for character
handling:

 012xxxx LCH load character

 014xxxx DCH store character

Both used a “byte pointer” consisting of a 2b byte number and a 16b word
address:

 Bits<0:1> = byte number (0x = 1, 10 = 2, 11 = 3)

 Bits<2:17> = word address

Because a full 18b word was needed to specify a byte, both LCH and DCH
forced “deferred” (indirect) addressing, regardless of whether bit<5> of the
instruction was clear or set. Instead, bit<5> was used to signify “automatic”
mode, which today we might refer to as auto-increment mode. If the indirect bit
was set, the byte pointer was incremented before use by adding 02000008. If a
carry out occurred, then 1 was added to the address, and the byte number was
set to 01. The incremented byte pointer was written back to memory for the next
iteration. Thus, in automatic mode, the byte pointer sequenced as follows:

 00|nnnnnn start, increment before use

 01|nnnnnn access byte 1

 10|nnnnnn access byte 2

 11|nnnnnn access byte 3

 01|nnnnnn+1 access byte 1

 10|nnnnnn+2 access byte 2

 etc.

A peculiar feature of the character handling instructions was “ring mode”. Ring
mode limited the byte pointer’s address increment to the low 3b. This allowed
repeated traversal of an 8 word (24 character) ring buffer, presumably a suitable
size for low-speed I/O devices like Teletypes.

The additional state for ring mode was kept in a flop that behaved, in some ways,
like program flag “zero”. To allow for the program flags (and ring mode) to be

saved and restored on a context-shift (essential for time-sharing), a new operate-
class, opcode 74, was added:

 740200 SCI clear IO

 740100 SCF clear program flags

 744000 IIF or IO from program flags

 742000 IFI or program flags from IO

 741000 IDC index character

IDC treated the AC like a byte pointer in automatic mode.

The character handling instructions were present in both serial #45 and serial
#48.

2’s Complement Arithmetic

The PDP-1’s 1’s complement arithmetic system reflected common practice of the
time, but it proved very cumbersome for multi-precision arithmetic, particularly
floating-point. The PDP-1D offered a solution by implementing 2’s complement
operations in parallel with the standard 1’s complement operations.

2’s complement arithmetic required retaining the last carry out from an addition.
Accordingly, the PDP-1D implemented a Link flag in addition to the Overflow flag.
The Link flag behaved like program flag “-1”; it could be saved and restored by
IIF and IFI, respectively. 2’s complement operations included one memory
reference instruction and several new operates:

 36xxxx TAD Link’AC = AC + M[ea] + Link

 740020 SZL skip if Link zero

 750020 SNL skip if Link non-zero

 740010 CLL clear Link

 740004 CML complement Link

 740014 STL set Link

 740200 SCM Link’AC = ~AC + Link

 740400 IDA AC = AC + 1

These instructions had a number of peculiarities. First, TAD always added in the
Link. This required the Link to be cleared prior to the start of any 2’s complement
sequence. Second, while SCM could be used as the upper steps of a multi-
precision 2’s complement, it could not be used as the first step, unless the link
was forced to 1, which required a separate instruction (STL occurred after SCM).
Finally, IDA, which could be combined with SCM, would not set the Link, and
thus could only be used to complement a single word. Further, IDA, like IDC,
was subject to Ring Mode, which made it potentially useless for arithmetic.

It took DEC some time to get 2’s complement arithmetic right; for example, the
PDP-4 could not take a 2’s complement with one instruction.

The 2’s complement arithmetic capability was present only in serial #45.

Protection

An essential requirement of time-sharing was that users be prevented from
accessing or damaging the executive or other users. Rather than provide an
“expensive” (in logic terms) base and bounds capability, the PDP-1D
implemented a simpler form of protection called “restrict mode.” Restrict mode
detected the following circumstances:

• Program issues IOT, HLT, or an illegal opcode

• Program accesses a restricted memory bank

• Program issues LCH or DCH in “automatic” mode when the indirect word
is 6X7777 (that is, the increment would cross a memory bank boundary)

If a restrict mode violation occurred, the hardware would NOP the current
instruction by zeroing the instruction register and force an interrupt to level 168.

The PDP-1D didn’t really have a concept of monitor mode and user mode. Once
restrict mode was turned on, it stayed on, unless any level of the sequence break
system was active. Thus, the executive had to run as an interrupt service
routine.

Memory protection was on a bank-by-bank basis. If the user program was run
with extend mode off, it would be unable to access anything outside its own bank
of memory and would operate in a 4KW “virtual machine”. If extend mode was
on, the user program could still only access specific memory banks, but it would
have to know which ones, because there was no relocation mechanism.

Memory protection was implemented differently on serial #45 and serial #48. On
serial #45, the granularity of memory protection was 16KW; there were four
protection bits, covering the entire physical address space. On serial #48, the
granularity was 4KW; there were eight protection bits, covering a maximum of
32KW of memory.

Serial #45 had two additional features. The first was a trap buffer that recorded
useful information on a restrict-mode trap. The CPU could read the contents of
the trap buffer to help parse the cause of the trap; reading the buffer cleared it.
The second was memory renaming. Memory renaming did just that: it changed
the upper 2b of the program address to a different value. According to the
manual, memory renaming “cannot be bypassed”. Thus, it’s hard to see how it
was used, unless it allowed the non-executive memory banks to be effectively
swapped, thereby allowing user programs to run at a fixed base address.

Clock

The clock was a fixed 1Khz 16b counter that was capped at 60,000 (one minute).
It generated two interrupts: once a minute, and once every 32ms. The two
interrupts were assigned to different interrupt levels. The clock counter could be
read, but the clock had no other visible state.

Multi-terminal Support

The terminal multiplexer on the PDP-1D was the Type 630. The Type 630
implemented a scanner over as many as 64 Teletype lines. Each line was half-
duplex, with a single buffer and a single ready flag. This made the Type 630
rather hard to program. The line flag could mean either character output
complete or character input pending. Software had to track whether the last
operation was a send or a receive, and in the case of simultaneous I/O, couldn’t
really figure out what had happened. (This is a common failing of half-duplex
terminal interfaces.)

The PDP-1D documentation on the Type 630 is very sketchy, but fortunately
there is a reasonably complete description in the PDP-6 Handbook. The Type
630 was considered workable enough to be adapted for all the early DEC
systems, up to and including the PDP-7. For the PDP-8, it was replaced by the
Type 680.

