
SIMH Magtape Representation and Handling
Bob Supnik, 17 Jan 2022

Magtape Representation

SIMH represents magnetic tapes as disk files. Each disk file contains a series of
objects. Objects are either metadata markers, like tape mark or end of medium,
or they are data records. Location 0 of the file is interpreted as beginning of
tape; end of file is interpreted as end of medium. Pictorially:

Location 0 Data Record

 Data Record

 :

 Tape Mark

 Data Record

End of File

Metadata markers occupy 4 bytes and are stored in little-endian order. Data
records consist of a leading 4-byte record length, an even number of bytes of
data, and a trailing 4-byte record length that must be the same as the initial
record length. The leading and trailing record lengths allow a record to be
accessed either forward or backward. The record length words are stored in
little-endian order. A record of length n appears as follows:

Leading Length n

Data Bytes n Bytes

Optional Pad
only if n is odd

1 Byte

Trailing Length n

If the record length is odd, a pad byte is appended to the data bytes to produce
an even number. The extra byte is undefined but should be 0.

Metadata markers and record length words are unsigned integers that are
divided into two fields, as follows:

31 30 29 28 27 26 25 24 23 ... 4 3 2 1 0

Class Number Marker Value

Class Number Record Length

Interpretation of the fields depends on the specific SIMH format supported.

SIMH Extended Format

The extended format assigns the sixteen possible record and marker classes as
follows:

Class
(hex)

Value or
Length

Interpretation

0 0 Tape Mark
0 >0 Good Data Record

1–6 any Private Data Record
7 any Private Marker

8 0 Bad Data Record, no data recovered

8 >0 Bad Data Record
9–D any Reserved Data Record

E any Tape Description Data Record

F any Reserved Marker

Typically, data records copied from a physical magnetic tape are written as Class
0 (good) data records. If the physical record reported a data error (e.g., a parity
or cyclic redundancy check error), it is written as a Class 8 (bad) data record to
indicate that the data integrity is in question.

An application may use the private data record and marker classes for any
purposes it desires. These classes are permanently assigned to private use;
SIMH will not interpret objects of these classes. Unless a simulator explicitly
asks to receive one or more private classes, the SIMH tape library will ignore
them by skipping over them until a standard data record or marker is
encountered.

For example, an application might use a private record to record the recovered
parity bits corresponding to a bad data record. Such an application would write
one private record after each bad record that would indicate the location of the

parity errors within the immediately preceding data record. Another use might be
to write recovered CRC and LRC bytes after each good or bad data record. Still
another use might be to pair standard data records with private records
containing the corresponding raw NRZI or PE signal streams. Private markers
might be used to indicate the original tape density (BPI) or to indicate "erased
and not yet written" records within a block-structured tape image, such as those
produced by some cartridge tape drives.

The Class E (tape description) record is assigned to descriptive information
regarding the tape image. The contents of Class E records are user-defined, and
SIMH does not interpret them. In this respect, they are treated as private
records, although with a specified purpose. An application might choose to
include in such a record one or more text lines describing the tape and an
explanation of how any private classes are used within the image. As another
example, a Class E record might hold a JPEG photo of the tape label. The
internal layouts and interpretations are entirely up to the application.

Classes 9 through D and F are reserved for future assignment. New extensions
to the SIMH format will come from allocations within these classes.

Three standard markers are currently defined:

Marker
(hex)

Interpretation

00000000 Tape Mark
FFFFFFFE Erase Gap

FFFFFFFF End of Medium

A series of four-byte erase gap markers is used to represent an erased portion of
a tape image. The count of markers reflects the physical length of the gap at the
assumed density. For example, a three-inch gap at 800 BPI would occupy 2400
bytes on a physical tape. In a tape image representing an 800 BPI tape, 600
four-byte erase markers would be written.

Part of the Class F marker range must be reserved to recognize "half-erase-gap"
markers. These arise because data records occupy a multiple of two bytes,
while markers occupy four bytes. If a data record that overwrites a longer erase
gap occupies a multiple of four bytes, then it would overlay an integral number of
erase gap markers. Interpretation in this case is straightforward, as the first
object following the trailing data record length word would be the defined erase
gap marker.

However, if the overwriting data record occupies only a multiple of two bytes,
then it will overlay the first two bytes of the four-byte erase gap marker that
follows the trailing record length word. A forward read of the image after the data
record retrieves the four-byte sequence FF FF FE FF because it reads half of the
overwritten marker and half of the following full marker. This special value,

FFFEFFFF (hex), is recognized as a "half-gap" marker, and reading is realigned
by backing up the resulting file position by two bytes. A forward read then
continues with the first full erase gap marker of the remaining gap.

When reading in reverse, the problem is more difficult. The four-byte value
preceding the full marker that begins the gap consists of half of the overwritten
gap marker (FF FF) and half of the four-byte length word of the preceding data
record. The difficulty is that "the half-gap marker" is actually a range of Class F
marker values. They all start with FF FF—the truncated half of the overlaid erase
gap marker—but the following two bytes from the upper part of the length word
may assume any value from 00 00 through FF FD (the values FF FE and FF FF
are disallowed, as otherwise the marker would have the same value as a full
erase gap or EOM marker). A value in this range is recognized as a half-gap
marker, and realignment is done by backing up the file position by two bytes to
point at the first byte of the erase gap. A reverse read then continues with the
data record by retrieving the complete four-byte trailing data record length word.

An end-of-medium marker is used to indicate the logical end of a tape. The
physical end of a tape image file serves the same purpose, so an EOM marker is
redundant if it is placed as the last object in a file. It is typically used to shorten
an image logically without physically truncating the image file and is equivalent to
writing erase gaps from the EOM point through the physical end of the file. The
SIMH tape library will not read or position past an EOM marker, although an
image may be extended by overwriting the marker.

The complete Class F range assignments are as follows:

Marker
(hex)

Interpretation

F0000000 – FFFDFFFF Available for future marker assignments
 FFFE0000 – FFFEFFFE Illegal (would be seen as full gap in reverse reads)

FFFEFFFF Interpret as half-gap in forward reads

FFFF0000 – FFFFFFFD Interpret as half-gap in reverse reads

FFFFFFFE Erase Gap

FFFFFFFF End of Medium

A conforming writer will never write the illegal marker values, and a conforming
reader will recognize the half-gap marker values and resynchronize as described
above.

SIMH Standard Format

The standard format is a subset of SIMH Extended format. Data records are
restricted to Class 0 (good) and Class 8 (bad), and the record length is restricted

to 24 bits (16 MB). Metadata markers are restricted to tape mark, erase gap, and
end of medium.

A SIMH-format file may contain any of the extended-format objects, but a reader
conforming to the standard format will recognize only those listed here. All other
objects will be ignored.

Magtape Operations

Magnetic tape drives can perform the following operations:

 Read forward
 Read backward
 Write forward
 Space forward record(s)
 Space backward record(s)
 Write tape mark
 Security erase
 Write erase gap
 Write private marker

On a real magtape, all operations are implicitly sequential, that is, they start from
the current position of the tape medium. SIMH implements this with the concept
of the current tape position, kept in the pos field of the tape drive’s UNIT
structure. SIMH starts all magtape operations at the current position and
updates the current position to reflect the results of the operation:

 Read forward. Starting at the current position, read the next 4 bytes from the

file, skipping any intervening gap and unrecognized marker or record classes.
If those bytes are a valid record length, read the data record and position the
tape past the trailing record length. If they are a tape mark, signal tape mark
and position the tape past the tape mark. If they are end of medium, or an
end of file occurs, signal no more data (‘long gap’ or ‘bad tape’) and do not
change the tape position.

 Read reverse. If the current position is beginning of tape, signal BOT.
Otherwise, starting at the current position, read the preceding 4 bytes from
the file, skipping any intervening gap and unrecognized marker or record
classes. If those bytes are a valid record length, read the data record and
position the tape before the initial record length. If they are a tape mark,
signal tape mark and position the tape before the tape mark. If they are end
of medium, or an end of file occurs, signal no more data (‘long gap’ or ‘bad
tape’) and position the tape before the end of medium marker.

 Write. Starting at the current position, write the initial record length, followed
by the data record, followed by the trailing record length. Position the tape
after the trailing record length.

 Space forward record(s). Starting at the current position, read the next 4
bytes from the file, skipping any intervening gap and unrecognized marker or
record classes. If those bytes are a valid record length, position the tape past
the trailing record length and continue until operation count exhausted or
metadata encountered. If those bytes are a tape mark, signal tape mark and
position the tape after the tape mark. If they are end of medium, or an end of
file occurs, signal no more data (‘long gap’ or ‘bad tape’) and do not change
the tape position.

 Space reverse record(s). If the current position is beginning of tape, signal
BOT. Otherwise, starting at the current position, read the preceding 4 bytes
from the file, skipping any intervening gap and unrecognized marker or record
classes. If those bytes are a valid record length, position the tape before the
initial record length and continue until operation count exhausted, BOT, or
metadata encountered. If they are a tape mark, signal tape mark and position
the tape before the tape mark. If they are end of medium, or an end of file
occurs, signal no more data (‘long gap’ or ‘bad tape’) and position the tape
before the end of medium marker.

 Write tape mark. Starting at the current position, write a tape mark marker.
Position the tape beyond the new tape mark.

 Security erase. Starting at the current position, write an end of medium
marker. Do not update the tape position.

 Write erase gap. Starting at the current position, erase the amount of tape
indicated by the specified length and bpi or by the specified number of bytes.
If the end of the gap overwrites an existing record, shorten that record
appropriately. Position the tape after the gap.

 Write private marker. Starting at the current position, write a private marker.
Position the tape beyond the new marker.

Magtape Error Handling

The following matrix defines error responses versus events for simulated
magtapes. PNU signifies position not updated; PU signifies position updated.

 Unit not
attached

Tape mark End of
medium
mark

Write
locked

End of
attached
file

Data read or
write error

Read
forward

Error: unit not
ready, PNU

Error: tape
mark, PU

Error: bad
tape or
runaway
tape, PNU

ok Error: bad
tape or
runaway
tape, PNU

Error: parity or
data, PU if gap
precedes error,
else PNU

Read
reverse

Error: unit not
ready, PNU

Error: tape
mark, PU

Error: bad or
runaway
tape, PU

ok Error: bad
or runaway
tape, PU

Error: parity or
data, PU if gap
precedes error,
else PNU

Write
forward

Error: unit not
ready, PNU

na na Error: unit
write locked,
PNU

na Error: parity or
data, PNU

Space
records
forward

Error: unit not
ready, PNU

Error: tape
mark, PU

Error: bad or
runaway
tape, PNU

ok Error: bad
or runaway
tape, PNU

Error: parity or
data, PU if gap
precedes error,
else PNU

Space
records
reverse

Error: unit not
ready, PNU

ok Error: bad or
runaway
tape, PU

ok Error: bad
or runaway
tape, PU

Error: parity or
data, PU if gap
precedes error,
else PNU

Write tape
mark

Error: unit not
ready, PNU

na na Error: unit
write locked,
PNU

na Error: parity or
data, PNU

Erase Error: unit not
ready, PNU

na na Error: unit
write locked,
PNU

na Error: parity or
data, PNU

Write gap Error: unit not
ready, PNU

na na Error: unit
write locked,
PNU

na Error: parity or
data, PNU

Write
marker

Error: unit not
ready, PNU

na na Error: unit
write locked,
PNU

na Error: parity or
data, PNU

The behavior of simulated tapes mirrors that of real tapes, except for errors that
make determination of the record length impossible. On a real tape, a read or
write error would update the position of the tape. On a simulated tape, this isn’t
possible; the length of the record is unknown. Real tape drivers would try to
recover from the error by backspacing over the erroneous record and trying
again. This won’t work on a simulated tape.

For intelligent tapes, like the TK50 and the TS11, this problem is handled by
reporting “position lost”. This status tells the tape driver that tape position is no
longer known, and normal error recovery isn’t possible. Older tapes do not have
this status. Accordingly, these tapes implement a limited form of state “memory”
for error recovery. If an error occurs on a forward operation, and the position is
not updated, the simulated tape unit “remembers” this fact. If the next operation
is a backspace record, the first backspace is skipped, because the simulated
tape is still positioned at the start of the erroneous record. If a read is then
attempted, the tape will read the record that caused the original error.

A corresponding error recovery method is used for reverse reads immediately
followed by forward spacing. The spacing operation is suppressed, so that a
reposition-and-retry recovery operation accesses the erroneous record again.

Magtape Emulation Library

SIMH provides a support library, sim_tape.c (and its header file sim_tape.h), that
implements the standard tape format and functions. The library is described in
detail in the associated document, “Writing A Simulator For The SIMH System”.

