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The HP 2100 simulator for the 21xx and 1000 series of machines supports execution of
the HP 2000 family of Time-Shared BASIC operating systems.  The 2000A and 2000E
products run on a single CPU, whereas the 2000B, 2000C, 2000F, and 2000 Access
products use a dual-CPU configuration.  The former present no special problem for
execution on SIMH, but the latter require some considerations to run reliably.

The Dual-CPU Hardware Implementation
The HP 2000B, C, F, and Access versions split the TSB operating system into two parts
running on separate CPUs.  The primary CPU, designated as the System Processor,
runs the BASIC interpreter for up to 32 concurrent users.  The secondary CPU,
designated as the I/O Processor, handles I/O through the terminal multiplexers.  An HP
12875A Processor Interconnect kit provides communication between the SP and the
IOP.  The kit consists of two bidirectional 16-bit parallel interfaces installed in each
CPU.  One interface in each CPU is designated as the output interface, and the other is
designated as the input interface.  Cables cross-connect the interfaces between the
CPUs.

Attached to the System Processor are the hard drives, the magnetic tape drives, and,
for the B/C/F systems, the paper tape reader.  The I/O Processor hosts the system line
printer and, for the Access system, optional paper tape and card punches and readers.
Each processor has a bootstrap loader residing permanently either in core or in ROM.

A consequence of this arrangement is that the device used to load the operating system
into the IOP — the paper tape reader for B/C/F systems, the magnetic tape drive for
Access — is connected to the SP.  Therefore, a cross-load between CPUs must be
performed.  The IOP tape contains the cross-loader that runs on the SP, followed by the
configured IOP operating system that is sent across the Interconnect to the IOP.  Each
program consists of a sequence of absolute binary records terminated by paper tape
trailer or a magnetic tape mark.

The Hardware System Startup Process
To start these TSB systems, the system operator performs the following steps after
applying power to both CPUs and all peripherals:

• The IOP bootstrap loader for the Processor Interconnect is run.  The loader
initializes the Interconnect and then sits in a loop waiting for the first word to
arrive from the SP.

• The paper or magnetic tape containing the IOP program is mounted on the
corresponding drive on the SP.

• The appropriate SP bootstrap loader is run to read the cross-loader program into
SP memory.  The loader halts the CPU when loading is complete.



• The cross-loader is run.  This program reads the IOP operating system from tape
and sends each byte across the Processor Interconnect to the IOP, where it is
received by the IOP bootstrap loader and placed into memory.  The SP guards
against IOP failure by running a handshake timeout counter on each byte sent.

• When the cross-loader receives an end-of-tape or end-of-file indication, it sends
a stream of zero-length records to the IOP.  This causes the IOP bootstrap
loader to halt its CPU after a loader-dependent number of empty records have
been received.

• The next zero-length record sent by the SP is not acknowledged by the IOP
(because it has halted).  When the timeout counter expires, the SP halts.

• The IOP operating system is run.  It initializes itself and then waits for a Start
Timesharing command to be sent from the SP across the Processor
Interconnect.

• The SP bootstrap loader for the system disc is run.  This loads the TSB disc boot
extension into memory.  When the load is complete, the SP halts.

• The SP boot extension is run.  This brings the rest of the SP operating system
program into memory.  The SP program initializes itself, prompts the system
operator for the current date and time, sends a Start Timesharing command
across the Processor Interconnect to the IOP, and then waits for an operator
command or user logon.  The system is now up and running.

Three aspects of the above sequence are critical to successful system startup:

• The IOP bootstrap loader must complete its initialization of the Processor
Interconnect kit before the SP cross-loader sends its first byte across the link.

• The SP cross-loader must receive an acknowledgement within the timeout period
for each byte sent to the IOP bootstrap loader.

• The IOP operating system must complete its initialization before the SP operating
system sends the Start Timesharing command.

If the first sequence requirement is violated, initialization will clear the input register
containing the first byte, and the IOP operating system will be corrupt.  A timeout during
the cross-load will cause early termination of the transmission, and again the IOP
operating system will be corrupt.  If the SP sends its Start Timesharing command
before the IOP is ready, the command will be ignored.  TSB will appear to start
normally, but the IOP terminal multiplexer will be unresponsive.

In hardware, the inherent delays in the operator's actions ensure that the first and third
requirements of the startup sequence are always met.  Once started, the IOP bootstrap
loader runs unimpeded, so the second requirement is also met.



Simulation of the Dual-CPU Configuration
The HP 2100 simulator supports execution of the dual-CPU TSB versions.  Two
simulator instances are used — one to run the SP program, and the other to run the
IOP program.  The IPL device simulates the Processor Interconnect kit, with a memory
region shared between the two instances serving as the interconnecting cables.  The
simulator also provides the special IOP firmware that is required to run the 2000 Access
version.

Given the complexity of starting a dual-CPU TSB system, it is desirable to use an
automated command file that ends with the system ready for user logons.  Starting the
TSB system under simulation has the same requirements as in hardware.  In addition,
the use of shared memory to simulate the CPU interconnection imposes an additional
requirement: the memory region to be shared between the simulator instances must be
established before either the IOP or SP begins program execution.  These requirements
complicate the use of automated simulator startup command files to bring up a TSB
system.

Starting a Time-Shared BASIC System on SIMH
In hardware, the I/O configuration and the interconnections between the processors are
established by the physical locations of the I/O cards installed in the CPU card cages
and the cabling between the Processor Interconnect cards.  In simulation, these aspects
are established by configuration commands executed after the two simulator instances
are started but before any software is loaded.

Manual configuration of the SP and IOP simulator instances for each execution is
tedious and error-prone.  A better approach would be to have separate SP and IOP
command files that configure the CPU and I/O device simulations, set up the shared
memory region for the IPL devices, and mount the required disc and tape images on
their respective devices.  With such files, a direct simulation of the preceding sequence
would require the user to:

• start an instance to process the SP command file, then

• start an instance to process the IOP command file, then

• start the IOP binary loader, then

• start the SP cross-loader, then

• start IOP operating system execution, and then

• start SP operating system execution.

The delays inherent in manually starting SP execution after the IOP is started guarantee
that the IOP initializations have completed first.

Starting the system in this way is inconvenient.  It is preferable to run a single command
file that handles all of the subsidiary actions, including cross-loading the IOP operating



software and starting the SP and IOP programs.  The problem with such an approach is
guaranteeing that the startup sequence requirements are met.

Problems with Automatic Startup Command Files
Given SP and IOP command files as outlined above, two options for TSB startup
requiring only one user action are possible.  One option is to start each instance with its
associated command file from a host operating system shell script.  The other is to start
one instance with its associated command file and have that instance start the second
instance with its command file.

As an example of the first approach, a UNIX Bash startup script might contain:

xterm –e hp2100 iop.sim &

hp2100 sp.sim

The equivalent Windows CMD script would be:

start hp2100 iop.sim

hp2100 sp.sim

A problem with this approach is that the two instances execute their command files
asynchronously, so the requirement that the IOP starts executing machine instructions
first cannot be guaranteed.

For the second approach, the user starts the first simulator instance manually,
specifying the SP command file:

hp2100 sp.sim

...and at some point within the SP file, there is a SIMH spawn command:

! start hp2100 iop.sim

...that starts a second instance of the simulator to execute the IOP command file.  This
approach eliminates the need for the host system shell script and guarantees that
commands in the SP file preceding the spawn of the IOP instance are executed before
the IOP commands.  However, this still does not guarantee that the IOP starts first,
responds to handshakes within the timeout period, or completes its initializations before
the SP program attempts communication.  If the host operating system blocks the IOP
instance from executing due to higher priority contending processes, the SP command
file will continue through SP program loading and execution, which will fail when IOP
communication is attempted.

This problem is inherent in having two independent simulator processes running on a
multitasking host system.  At any point during operation, the host operating system
might block or preempt one of the two simulator instances without affecting the other.
The implicit hardware assumption, that both CPUs are always free to run, does not hold
in simulation.  Moreover, there is no way to guarantee that both instances receive the



same amount of host CPU time, so the startup sequence might succeed during one
simulation session but fail on the next.  Even if the instances were operated at the
highest priority, they may still block when calling the host OS for terminal output.

Single-core host machines have an additional problem.  TSB does not have a traditional
localized idle loop that is executed while the operating system is otherwise unoccupied.
Consequently, the SIMH SET CPU IDLE command does not idle the simulator when
running TSB, and therefore the SP and IOP instances take 100% of their available host
CPU times.  On a single-core machine, the instances generally will time-share only if
they are run at the same priority.  However, starting an instance in the background on
UNIX with the & operator automatically drops the execution priority relative to the
foreground instance.  The same situation pertains on Windows to a different degree: a
window displayed on top of another window will receive a priority boost relative to the
partially hidden one.  As both instances execute continuously, the lower-priority instance
will be starved of host CPU time until the higher-priority instance blocks for I/O.

Multi-core PCs do not solve the problem.  Even when each instance has its own CPU
core and additional cores are available to handle all other system threads, an instance
may still block on host disc I/O for, e.g., demand page loading.  The situation is worse if
other host processes must contend for a limited number of cores — the SP may
execute either concurrently with the IOP or while the IOP is blocked by processor
contention.  A complicating factor is that SIMH automatically decreases its own process
priority when simulated execution begins with a RUN or GO command.  Consequently,
an instance executing SCP commands has priority over an instance executing TSB
system code.  Successful system startup then becomes much more sensitive to the
timing of operations within the respective simulator command files.

Even with wholly manual operation of the two simulator instances, the problem remains
that the IOP may block while the SP cross-loader is running.  Given that the simulator
runs about ten times faster than a real HP 2100, the SP will time out should the IOP
block for more than about 60 milliseconds, and the load will fail.

In hardware, the IOP takes a deterministic time to respond to a cross-load handshake or
execute initialization code.  In simulation, this time will vary from some minimum lower
limit to essentially an unbounded upper limit, depending on host system load.
Constraining the startup sequence within these wide limits is the key to successful
operation.

There are five possible approaches to sequencing the two instances, listed here in order
of increasing probability of startup success:

• Run asynchronously, and hope for the best.

• Insert timed delays (sleeps) at appropriate points in the command files.

• Insert semaphore-based waits and signals in the command files.

• Rendezvous the two instances periodically to interlock execution.



• Provide two CPUs within a single simulator instance.

With carefully designed command files, the first approach may work on multi-core,
lightly loaded host systems.  However, success is problematic, and failure may require
reloading the system from the last HIBERNATE tape if the IOP does not respond after
the SP has started.

Timed delays help a bit, but the delays must encompass the longest possible IOP
preemption, which is impossible to predict.  In most cases, the delays will be longer than
necessary, yielding slow startup progress.  Moreover, delays cannot be inserted within
program execution, so the preemption problem during cross-loading still exists with this
mechanism.

Having one instance wait on a semaphore until the other instance signals it improves
matters substantially over timed delays.  The waits at the various critical points of the
startup sequence become minimal — if the second instance has already signaled the
semaphore, the first instance will proceed directly through the wait without waiting.
Preemption of the signaling instance automatically forces the other instance to wait until
the first instance resumes.  However, because the waits are at the command level,
preemption during instruction execution can still cause the startup process to fail.

Execution interlock synchronization allows both instances to execute freely for an
agreed number of machine instructions.  When that number is reached, each instance
attempts to rendezvous with the other instance before proceeding.  The first instance to
reach the rendezvous point waits for the other instance to arrive, whereupon both
instances resume execution for the set number of machine instructions.  Rendezvous,
implemented by a semaphore-controlled execution gate, ensures that preemption of
one instance will cause the other instance to wait automatically at the closed gate.
However, the synchronization is only relative, in that the instances can diverge in
execution up to the instruction limit.  In addition, constant calls to the host operating
system to manipulate the semaphore impose an overhead that reduces simulation
speed.  Another problem is that when one instance halts, such as at completion of the
initial cross-load, the other instance suspends execution at the rendezvous and will not
resume until either the first instance continues execution or interlocking is canceled.

The only way to guarantee that the SP and IOP instances remain synchronized through
preemption by the host operating system is to redesign the simulator to provide both
CPUs within a single simulator instance.  This is possible; Bob Supnik wrote an
unreleased simulator for a six-way symmetric multiprocessor system that interleaved
instruction execution among the processors.  Because the CPUs execute in lock-step
with one instruction executing in each CPU per cycle, blocking the simulator instance
blocks all CPUs simultaneously.  However, it is not practicable to retrofit this approach
to the existing HP2100 simulator, due to the extensive restructuring required.  Nor is it
necessarily desirable; with both CPUs executing continuously, each would execute
machine instructions for one-half of the time and so would run at one-half of the speed
of an independent instance.



Of the five methods, combining process synchronization using waits and signals at the
command level with rendezvous at the execution level provides the best control with the
lowest overhead.

Controlling TSB Startup with Process Synchronization
While the execution order of SP and IOP command files is strictly sequential, the order
in which the commands interleave in the overall sequence varies with system load.
Constraints may be imposed on the order by synchronizing the processes at certain
critical points.  Essentially, this involves suspending one process until the other process
“catches up” to the same point in the startup sequence.

Release 28 of the HP 2100 simulator added two SCP commands for this purpose.  The
SET IPL WAIT command suspends a simulator process until a matching SET IPL
SIGNAL command is issued by the other process.  If the signal command is issued
before the wait command, the latter will not suspend but instead will proceed
immediately with the next command.  These commands control command-file execution
but not CPU execution.

Release 30 extended synchronization to the execution of machine instructions.  The
SET IPL INTERLOCK=<count> command sets up a rendezvous point with a closed
gate and directs each instance to rendezvous after executing the specified number of
instructions.  The first instance that arrives at the gate waits until the other instance
arrives to open it.  After both instances resume, the gate closes, awaiting another
rendezvous.  The effect is that neither instance can get more than <count> instructions
out of step with the other.

As an example, consider the 2000F cross-loading sequence that loads the IOP
operating system.  From the foregoing discussion, the critical requirement is that the
IOP bootstrap loader must be running and have completed its initialization before the
SP cross-loader is started.  An SP command file that provides the required startup
sequence contains these lines (in part):

; Load the cross-loader from the paper tape reader.

attach -E PTR IOP.tape

boot PTR

; Verify that the load was successful.

assert T=102077

; Start the IOP simulator instance to receive the IOP program.

! start hp2100 iop.sim

; Start the cross-loader to transfer the IOP program.

deposit P 000002

go



; Verify that the cross-load was successful.

assert T=102077

...where the start command above is used to spawn an asynchronous HP 2100
instance to execute the iop.sim command file, and the assert commands are used to
ensure that the bootstrap and cross-load transfers completed successfully with HLT 77
instructions.  The 2000F cross-loader is a simple assembly language program:

TWP   STC PR,C      START PHOTOREADER

      SFS PR        WAIT FOR A CHARACTER

      JMP *-1

      LIA PR        GET CHARACTER FROM PHOTOREADER

      CLB           RESET COUNTER

TWP10 SFC C2        WAIT FOR IOP TO ACKNOWLEDGE

      JMP TWP30

      INB,SZB       INCREMENT TIME-OUT COUNTER

      JMP TWP10

      CLC PR        TIMED OUT - TURN OFF

      HLT 77B         PHOTO READER AND HALT

      JMP TWP

TWP30 OTA C2        OUTPUT CHARACTER

      STC C2,C      SET FLAG

      JMP TWP       GET NEXT CHARACTER

The critical point is the OTA C2 instruction at label TWP30.  This outputs the first byte to
the Processor Interconnect.  Initialization of the Interconnect residing in the IOP must
have occurred by this point in the SP's execution, or the byte will be lost, and the cross-
load will fail.

The corresponding IOP command file contains:

; Start the IOP binary loader to receive the program.

deposit S 000000

boot IPL

; Verify that the load was successful

assert T=102077

The boot IPL command loads the Processor Interconnect bootstrap into memory and
executes it.  The simulator provides a special Basic Binary Loader bootstrap that begins
with this assembly language sequence:

BOOT  LDA DPISC,I   GET INPUT CARD SELECT CODE

      JMP CONFG     CONFIGURE I/O INSTRUCTIONS

START CLC 0,C       INITIALIZE THE INTERCONNECT

      [...]

CONFG ADA SFS       CONFIGURE THE

      STA SFS.C       SKIP-IF-FLAG-SET INSTRUCTION

      ADA STC       CONFIGURE THE

      STA STC.C       SET-CONTROL INSTRUCTION



      ADA MIB       CONFIGURE THE

      STA MIB.C       MERGE-INTO-B INSTRUCTION

      JMP START     START THE TRANSFER

The critical point here is the CLC 0,C instruction at label START.  This clears the
Interconnect card, including its input data register.  The IOP must execute this
instruction before the SP gets to label TWP30 in its loader, or data will be lost.

Starting at label BOOT, the IOP executes 10 instructions to reach the critical point.
Starting at label TWP in the cross-loader, the SP executes 6 + 2 * TIME instructions to
reach the critical point, where TIME is the photoreader fast read time.  With the default
time (100 event ticks), the SP reaches the critical point after 206 instructions.
Therefore, the sequence can be guaranteed by placing a SET IPL INTERLOCK
command in the SP command file immediately before the spawn command that starts
the IOP instance and specifying an interlock value greater than 10.  If the IOP instance
start is delayed or is blocked after starting, the SP will pause for a rendezvous while
executing the SFS PR / JMP *-1 loop and will not resume until the IOP has executed
past the CLC 0,C initialization.

Another critical point occurs after cross-loading when the IOP and SP operating
systems are run.  Using the CPU instruction tracing capability (SET CPU
DEBUG=INSTR), the IOP is seen to complete its initialization after approximately
260,000 instructions, and the SP sends the Start Timesharing command after about
1,000,000 instructions.  So specifying any reasonable interlock value will ensure that the
IOP is ready for the first SP communication.

As a second example, consider the 2000 Access IOP operating system generator.  This
program runs on the SP to generate a new IOP configuration.  When generation is
complete, the SP cross-loads the new system to the IOP.  Then, if a copy is to be saved
to magnetic tape, the program is cross-loaded back to the SP in memory-image format.
In hardware, the system operator follows this sequence:

• After answering the generation questions, the SP prints START IOP
PROTECTED LOADER.  PRESS RETURN.

• The IOP bootstrap loader for the Processor Interconnect is run.

• Pressing the RETURN key on the system console transfers the new system to
the IOP.

• When the transfer completes, the IOP bootstrap loader halts.

• When the SP times out, it prints MOUNT IOP COPY TAPE.  PRESS RETURN.

• The generator tape is removed from the magnetic tape drive and a blank tape is
mounted in its place.

• After pressing the RETURN key on the system console, the SP prints START
IOP AT LOCATION 2002.



• The P register on the IOP is set to 2002, and the RUN button is pressed.

• The IOP program is transferred to the SP and written to tape.  When the transfer
completes, the IOP halts.

• The SP prints the system generation memory and entry point map.  When the
map is complete, the SP halts.

Execution interlocking is used as above to transfer the new operating system from the
SP to the IOP.  However, interlocking must be disabled to restore asynchronous
operation after the IOP bootstrap halts.  Otherwise, the SP cross-loader would not time
out; instead, it would pause in its timeout loop to wait for the IOP to open the execution
gate, which cannot occur if the IOP is halted.

But there is a problem: with interlocking disabled, the IOP instance would be free to
start execution at location 2002 before the SP had printed the prompt message and
readied itself to receive the program from the IOP.  The HP 2000 Access Operator's
Manual cautions, "Never attempt to start the IOP at location 2002 until you receive this
message.  If you do, you will have to configure the IOP again."

Therefore, we use the WAIT and SIGNAL commands to synchronize the instances.  In
the IOP command file after the bootstrap loader halts, we have:

; Verify that we had a successful cross-load.

assert T=102077

; Resume asynchronous operation to allow the SP to run freely.

set IPL INTERLOCK=0

; Wait for the operator to mount the new tape.

set IPL WAIT

; The SP is now ready.  Start the IOP to dump memory across the IPL.

deposit P 002002

go

; Verify that the dump succeeded.

assert T=102077

In the corresponding place in the SP command file, we have:

; Continue until the IOP halts and then mount the new tape.

go until "MOUNT IOP COPY TAPE.  PRESS RETURN"

detach MSC0

attach -N MSC0 IOPCOPY.tape



reply "\r"

; Continue until the SP is ready to receive the IOP copy.

go until "START IOP AT LOCATION 2002"

; Re-enable execution synchronization to ensure that the IOP is ready

; to dump when we are ready to receive.

set IPL INTERLOCK=50

; Signal the IOP that the SP is now ready to receive the program copy.

set IPL SIGNAL

; Receive the IOP program and write it to the mounted tape.

go

; Verify that we had a successful copy.

assert T=102077

Some host platforms do not support the underlying system library routines necessary to
provide process synchronization.  In this case, the SET IPL WAIT command falls back
to a simple two-second timed wait, which may provide enough host processor time for
the other process to reach its SET IPL SIGNAL command (which, in fallback mode, has
no effect).  If this is insufficient, a DEPOSIT IPL WAIT <n> command may be used to
lengthen the pause.

The IPLO device writes a trace line when an ATTACH command is issued and the host
system does not support process synchronization.  For example:

set debug stdout

set IPLO DEBUG=STATE

attach -S IPL 1

>>IPLO state: Synchronization is unsupported on this system; using

fallback

The Effect of Throttling on System Startup
As noted earlier, HP 2000 Time-Shared BASIC does not have a traditional idle loop that
is executed while the operating system is otherwise unoccupied.  Consequently, the SP
and IOP instances take 100% of their available host CPU times.

The SP and IOP command files may contain SET THROTTLE commands to reduce the
loads on the host CPU.  However, because throttling periodically preempts the SIMH
process, use of instruction interlocking is imperative to achieve a successful system
startup.  Throttling intentionally reduces simulation speed, so it is best employed only
after IOP initialization is complete.



The Race Conditions in 2000 Access
The 2000 Access version has two race conditions: one that manifests itself by an
apparently normal boot and operational system console but no PLEASE LOG IN
response to terminals connected to the multiplexer, and another that causes a user
program's printer or paper tape punch output to stop for no apparent reason.

The first race occurs during SP system loading, and the cause is this code in the SP
disc loader (source files S2883, S7900, S79X0, S79X3, and S79XX on the Access
source tape):

LDA SDVTR     REQUEST

JSB IOPMA,I     DEVICE TABLE

[...]

STC DMAHS,C   TURN ON DMA

SFS DMAHS     WAIT FOR

JMP *-1         DEVICE TABLE

STC CH2,C     SET CORRECT

CLC CH2         FLAG DIRECTION

DMA completion causes the SFS instruction to skip the JMP.  The STC/CLC pair at the
end normally would cause a Processor Interconnect interrupt and a second Request
Device Table command to be recognized by the IOP, except that the IOP DMA setup
routine DMAXF (in source file SD61) specifies an end-of-block CLC that holds off the
interconnect interrupt, and the DMA interrupt completion routine DMCMP ends with a
STC,C that clears the interconnect flag.

The SP program executes four instructions between DMA completion and the CLC.
The IOP program executes 34 instructions between the DMA completion interrupt and
the STC,C that resets the Processor Interconnect.  In hardware, the two CPUs are
essentially interlocked by the DMA transfer, and DMA completion occurs almost
simultaneously in each machine.  Therefore, the STC/CLC in the SP is guaranteed to
occur before the STC,C in the IOP, and the Processor Interconnect interrupt never
occurs.  Under simulation, and especially on multi-core hosts, that guarantee does not
hold.  If host load preemption causes the STC/CLC to occur after the STC,C, then the
IOP starts a second device table DMA transfer, which the SP is not expecting.
Consequently, the IOP never processes the subsequent Start Timesharing command,
and the multiplexer does not respond to user logon requests.

The Request Device Table command is sent between the LOAD OR DUMP
COMMANDS? and DATE? prompts that appear on the system console.  Enabling
instruction interlocking across this code avoids the race.  The interlock value is critical; it
cannot be more than 16 instructions to allow for the worst-case preemption scenario.
That occurs when the SP instance does not receive the last DMA input word during a
poll that occurs at the last instruction of the SP's interlock quantum, and then the IOP
outputs the last DMA word with the first instruction of its quantum.  The IOP will then
execute a full quantum (16 instructions) and rendezvous with the SP.  If the SP blocks
immediately after rendezvous, the IOP can then execute a second full quantum (another
16 instructions) before the SP is able to pick up the last word and execute its CLC.  To



avoid this, two interlock times must be less than the critical instruction path length of 34
instructions.

Synchronization must remain active at least until the IOP has completed its initialization.
If synchronization events are not supported on the host platform, the simulator employs
a workaround that decreases the incidence of the problem: the DMA output completion
interrupt is delayed to allow the other SIMH instance a chance to process its own DMA
input completion interrupt first.  This improves the race condition by delaying the IOP
until the SP has a chance to receive the last word, recognize its own DMA input
completion, drop out of the SFS loop, and execute the STC/CLC.  The delay is initially
set to one millisecond but is exposed via a hidden IPLI register, EDTDELAY, that allows
the user to lengthen the delay if necessary.

Using this fallback mechanism instead of CPU synchronization only improves the
condition.  It does not solve it because delaying the IOP does not guarantee that the SP
will actually execute.  It is possible that a higher-priority host process will preempt the
SP, and that at the delay expiration, the SP still has not executed the STC/CLC.  Still, in
testing, the incidence dropped dramatically, so the problem is much less intrusive.

The second race occurs when a user program writes to a system line printer or paper
tape punch.  The incidence is higher when a large amount of output is generated
quickly.  The cause is this code in subroutine #IPAL in the SP main program source
(STSB) that is used to send output data to a non-shareable device controlled by the
IOP:

LDA ERTMP     SEND

IOR ALB         REQUEST

JSB SDVRP,I     CODE

LDB #IPAL     RETRIEVE

INB             BUFFER

LDA B,I           LENGTH

JSB SDVRP,I   SEND TO IOP

SFS CH2       WAIT FOR

JMP *-1         ACKNOWLEDGEMENT

CLF 0         INHIBIT INTERRUPTS

LIA CH2       RETRIEVE RESPONSE

If the Allocate Buffer ("ALB") request is refused by the IOP because all output buffers
are in use, the resulting "No Buffer Available" response will cause the SP to issue a
Release Buffers command to the IOP and then suspend the user's program.  When the
line printer completes its operation on the current output buffer, the IOP releases it and
then indicates buffer availability by sending a Wake Up User command to the SP to
retry the allocation request.

The problem occurs when the line printer finishes a line just as the Allocate Buffer
request is made.  That request sends two words: the ALB request code and the buffer
length.  After receiving the second word, the IOP finds that all buffers are in use and
denies the request.  If the line printer completion then arrives, the IOP immediately
sends a Wake Up User command to indicate that a buffer is now available.  If the



command arrives between the time the SP sends the buffer length word and the time it
retrieves the response, the user program will hang.  This occurs because the "No Buffer
Available" response subsequently causes the SP to set a flag to indicate that the user
has been suspended for buffer availability.  If the Wake Up User command arrives after
the response is received but before that flag is set, the command is ignored.  So the SP
is waiting for the IOP to issue the command, but the IOP has already issued it.  This
leaves the suspension in force until the user aborts the program by pressing the BREAK
key.

Nominally, there are only about nine instructions executed between the STC CH2
(within the SDVRP subroutine) that causes an IOP to accept the buffer length word and
the SFS CH2 (above) that detects that the IOP's acknowledgement has arrived.  Once
detected, the CLF 0 instruction turns the interrupt system off so that commands
received from the IOP are deferred until after the user suspension flag is set.

However, the SP's interrupt system is on during the above SFS CH2/JMP *-1 loop, and
the Processor Interconnect has the highest I/O interrupt priority.  So if, say, a time-base
generator interrupt occurs during the SFS loop, several dozen instructions may be
executed before control returns to the loop.  If, during that time, the IOP command
arrives, the resulting higher-priority interrupt is handled before the loop return, and the
command is ignored because the "user is suspended" flag has not been set.

Simulation works around this problem by arranging the card service routine to ensure
that the IOP status response is picked up before an IOP command if they both are seen
during the same input poll.  However, there is no general way to ensure that the
response is processed by the SP program before a pending IOP command is
recognized.  That is because the SP does not read the responses of some commands it
sends, so simply holding off input card commands until the output card data register is
read will not work.

The best we can do to reduce the frequency of the race condition is to delay IOP
command recognition after a status response arrives.  The IPL simulation does this by
rescheduling the poll using a delay of ten times the normal maximum poll delay to give
any intervening interrupt handlers time to complete.  The next STC directed to either
card clears the delay and reschedules the poll for immediate entry, providing rapid
response when block data is being transferred in either direction across the Processor
Interconnect.

Summary
The HP 2000B, C, F, and Access dual-CPU Time-Shared BASIC operating systems will
run on the HP 2100 simulator, but several internal aspects must be considered for
successful startup and operation.  These arise from the differences in behavior of
dedicated hardware versus two simulator instances running on a multi-core host
machine.  Arbitrary host OS preemption of the separate SP and IOP instances means
that the deterministic behavior of the original HP hardware cannot be guaranteed.
However, the use of process synchronization commands during system startup will
improve the probability of successful system execution.
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