
SIMH Users’ Guide Supplement
20-Jun-2023

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published 1993-2012, written by Robert M Supnik
Copyright © 1993-2012, Robert M Supnik
Copyright © 2019-2023, J. David Bryan

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the authors shall not be used in advertising or
otherwise to promote the sale, use, or other dealings in this Software without prior written
authorization from the authors.

1 Introduction ..4

1.1 Unpacking and Compiling the Simulator...4

2 Simulator Control Program Extensions..5

2.1 Quoted Strings..5

2.2 BREAK Command...5

2.3 REPLY Command..6

2.4 GO UNTIL and RUN UNTIL Commands...7

2.5 GO FOR and RUN FOR Commands ...8

2.6 IF Command...8

2.7 Quoting Actions ...9

2.8 GOTO Command ...10

2.9 CALL and RETURN Commands ..11

2.10 DELETE Command ...11

2.11 PAUSE Command..12

2.12 ATTACH and DETACH Commands ..12

2.13 SET Command ...13

2.13.1 SET BINARY..13

2.13.2 SET ENVIRONMENT..13

2.13.3 SET CONSOLE CONCURRENT...14

2.13.4 SET CONSOLE SERIAL..15

2.14 DO Command ..15

2.14.1 DO and SET CONSOLE CONCURRENT ...16

2.15 ABORT Command...16

2.16 Aborting Command File Execution ...17

2.17 FLUSH Command..17

2.18 SHOW Command ..17

2.19 Variable Substitution..18

2.20 Global Initialization File ..20

3 SCP 4.x-to-3.x Conversion...22

3.1 Unimplemented Commands...22

3.2 SCP 3.x Replacements ...23

3.2.1 Quoted Strings ...23

3.2.2 EXPECT and SHOW EXPECT...23

3.2.3 SEND and SHOW SEND..24

3.2.4 SLEEP..24

3.2.5 Host File System Commands...24

3.2.6 IF...ELSE ...25

3.2.7 SET REMOTE and SHOW REMOTE..25

3.2.8 Miscellaneous Commands ...25

3.3 SCP 3.x Differences ...25

3.3.1 Initialization File Search Order ...25

3.3.2 Serial Port Names in ATTACH and DETACH Commands..25

3.3.3 IF Command ..25

3.3.4 HELP Command..26

3.3.5 Predefined Substitution Variables ...26

3.3.6 Command Option Switches ...26

1 Introduction

This manual documents the extensions to the Simulator Control Program (SCP) provided by the HP 2100 and
3000 simulators. It is intended for use in conjunction with the SIMH Users' Guide manual, which describes the
general commands that may be entered at the SCP prompt.

1.1 Unpacking and Compiling the Simulator

The simulator source distribution consists of a single ZIP archive file. The archive directory structure is:

root

SCP

doc

HPnnnn

The root directory of the distribution is empty but will contain the simulator executable after compilation. The
SCP subdirectory contains the source files for the Simulator Control Program and makefiles to build the
simulator. The HPnnnn subdirectory contains the files for the HP2100 or HP3000 simulator. The doc
subdirectory contains the simulator operation guides in PDF format and the release notes in text format. This
directory structure must be preserved when the distribution archive is unpacked.

To build the simulator, first unpack the archive into a blank directory; this becomes the root directory of the
simulator. The source files contain Windows line ends (i.e., CR LF pairs). Your host platform may object to this;
if so, convert the files to your local line-end convention. The unzip utility from Info-ZIP will do this automatically
if the –a option switch is specified.

Two makefiles are provided: one for GNU make, and the other for the Microsoft Visual C++ NMAKE utility. Both
provide these targets:

• hp2100 — to make the HP 2100 simulator

• hp3000 — to make the HP 3000 simulator

• clean — to remove the simulator object and executable files.

...and both will place the resulting executable file in the root directory. Both are invoked from the root directory.

To compile for Windows and UNIX/Linux systems using the gcc or clang compilers and GNU make, enter:

make –C SCP <target>

...for a gcc compilation, or:

make –C SCP <target> GCC=clang

...for a clang compilation.

To compile for Windows using the Microsoft Visual C++ compiler and NMAKE, enter:

nmake /f SCP\makefile.mak <target>

The intermediate object files will be placed in the Release subdirectory of the root directory.

2 Simulator Control Program Extensions

The HP simulators provide all of the commands described in the SIMH Users' Guide manual, in addition to those
new or extended commands described below. Additional simulator-specific commands are described in the
individual HP Simulator User’s Guides for the HP2100 and HP3000 simulators. All commands and command
switches are case-insensitive; they are rendered in uppercase in examples below simply for clarity.

2.1 Quoted Strings

Several extended commands take quoted-string parameters, which receive additional processing. A quoted
string is a sequence of characters delimited either by quotation marks or apostrophes. The starting and ending
quote characters must match. Within a quoted string, the following escape sequences are replaced with the
corresponding characters:

Sequence Replacement Description

%% % Percent symbol

\r CR Carriage return (octal 015)

\n LF Line feed (octal 012)

\" " Quotation mark

\' ' Apostrophe

\\ \ Backslash

\nnn octal nnn Octal character (000-177)

The \" and \' escapes permit insertion of the string delimiter into the quoted string. For example, these quoted
strings are interpreted identically:

"Quoth the raven \"Nevermore.\""

'Quoth the raven "Nevermore."'

The \nnn escape permits insertion of any character in the octal range 000-177. Exactly three octal digits (0-7)
must be present.

2.2 BREAK Command

The existing BREAK command described in the Breakpoints section of the SIMH Users' Guide manual is
extended to add temporary breakpoint capability. The new –T breakpoint type switch indicates that the
breakpoint will be set temporarily. A temporary breakpoint is removed once it occurs; this is equivalent to
setting the (first) breakpoint action to NOBREAK. Without –T, the breakpoint is persistent and will cause a
simulation stop each time it occurs.

The existing BREAK and NOBREAK commands are also extended to accept character strings as well as
memory addresses. String breakpoints cause simulation stops when the character sequences are encountered
in the system console output stream; these are similar to stops that occur when CPU execution reaches
specified memory addresses. The additional command forms are:

BREAK { -T } <quoted-string> { ; <action> ... }
BREAK { -T } <quoted-string> DELAY <interval> { ; <action> ... }
BREAK DELAY <interval>
NOBREAK <quoted-string>
NOBREAK ""

The first form sets a breakpoint that stops simulator execution when the content of the quoted string appears in
the system console output. By default, the simulator stops immediately after the final character of the quoted
string is output. This may be too fast for the interrupted program if subsequent SCP commands affect it (e.g., if
entering a tape unit ATTACH command generates an interrupt that will be processed by the program). In this
case, the second form may be used to insert a delay of the specified interval before execution stops. With either
form, if the quoted string duplicates an existing breakpoint, that breakpoint will be updated with the specified
delay and actions. As with address breakpoints, the –T switch indicates that the breakpoint is temporary and
should be cleared once it occurs.

If the second form is used, the delay is set temporarily for that breakpoint; it then reverts to the default delay for
subsequent breakpoints. If all of the breakpoints for a program require a delay, it may be set as the new default
by using the third form; the initial default delay is 0. Combinations of the first three forms may be interspersed
as necessary to meet program timing requirements.

Delay intervals may be expressed either directly by a decimal event tick count, or as a realistic time value by a
decimal count and a time unit. Time units may be MICROSECOND[S], MILLISECOND[S], or SECOND[S]; the
abbreviations USEC[S] and MSEC[S] may be used interchangeably for the first two units, respectively.

The optional action commands are executed when the breakpoint occurs. If the breakpoint is temporary, the
actions are executed once; otherwise, they execute each time the breakpoint occurs.

The NOBREAK command cancels a pending string breakpoint. If the quoted string specifies an existing
breakpoint, that breakpoint will be deleted. If the quoted string is empty, then all string breakpoints are deleted.
The existing NOBREAK ALL form cancels all string and address breakpoints.

2.3 REPLY Command

The REPLY command supplies keyboard input from the system console. It may be used in command files to
supply responses to program prompts during long or tedious user interactions (such as system generations).
REPLY sets up the keyboard input but does not resume simulator execution; a subsequent GO is required to
continue simulation. The command forms are:

REPLY <quoted-string>
REPLY <quoted-string> DELAY <interval>
REPLY DELAY <interval>
NOREPLY

The first form supplies the content of the quoted string to the system console, character by character, as though
entered by pressing keys on the keyboard. By default, the first character is supplied to the console device
immediately after simulation is resumed with a GO or CONTINUE command. This may be too fast for the
receiving program, e.g., if it initializes the console device before looking for characters. In this case, the second
form may be used to insert a delay of the specified interval before the first character is supplied.

If the second form is used, the delay is set temporarily for that reply; it then reverts to the default delay for
subsequent replies. If all of the replies to a program require a delay, it may be set as the new default by using
the third form; the initial default is 0. Combinations of the first three forms may be interspersed as necessary to
meet program timing requirements.

Delay intervals may be expressed either directly by a decimal event tick count, or as a realistic time value by a
decimal count and a time unit. Time units may be MICROSECOND[S], MILLISECOND[S], or SECOND[S]; the
abbreviations USEC[S] and MSEC[S] may be used interchangeably for the first two units, respectively.

The NOREPLY command cancels any pending reply. Specifying a new reply also cancels any existing one, as
only a single reply may be active at any given time. Replies are also effectively cancelled when they are
consumed.

2.4 GO UNTIL and RUN UNTIL Commands

The existing GO and RUN commands are extended with an UNTIL clause that sets one or more temporary
breakpoints. This provides a simplified method of stepping through a program and stopping at a series of
addresses. For example, these commands:

BREAK 100
GO
NOBREAK
EXAMINE A
BREAK 200
GO
NOBREAK
EXAMINE B

...are equivalent to:

GO UNTIL 100
EXAMINE A
GO UNTIL 200
EXAMINE B

This also provides a concise way of specifying prompt/response pairs when automating replies to program
prompts. For example, these commands:

BREAK -T "prompt"
GO
REPLY "response"

...are equivalent to:

GO UNTIL "prompt" ; REPLY "response"

The GO UNTIL and REPLY commands provide an easy way to automate a series of prompts and responses;
for example:

GO UNTIL "OPTION? " ; REPLY "RELOAD\r"
GO UNTIL "CHANGES? " ; REPLY "YES\r"
GO UNTIL "MEM SIZE? " ; REPLY "128\r"
[...]

The extended command forms for both GO UNTIL and RUN UNTIL are:

GO UNTIL <stop-address> { ; <action> ... }
GO UNTIL <quoted-string> { ; <action> ... }
GO UNTIL <quoted-string> DELAY <interval> { ; <action> ... }

GO <start-address> UNTIL <stop-address> { ; <action> ... }
GO <start-address> UNTIL <quoted-string> { ; <action> ... }
GO <start-address> UNTIL <quoted-string> DELAY <interval> { ; <action> ... }

Multiple <stop-address>es, separated by commas, may be specified. For example, GO 5 UNTIL 10,20 sets
temporary breakpoints at addresses 10 and 20 and then resumes simulator execution at address 5. As with the
BREAK command, specifying a DELAY value sets a temporary delay of the specified number of machine
instructions before execution stops. If a DELAY value is not given, the breakpoint uses the default delay set by
an earlier BREAK DELAY command, or a zero delay if the default has not been overridden.

Delay intervals may be expressed either directly by a decimal event tick count, or as a realistic time value by a
count and a decimal time unit. Time units may be MICROSECOND[S], MILLISECOND[S], or SECOND[S]; the
abbreviations USEC[S] and MSEC[S] may be used interchangeably for the first two units, respectively.

2.5 GO FOR and RUN FOR Commands

The GO and RUN commands are extended with a FOR clause that breaks execution after a specified interval.
The command forms are:

GO FOR <interval> { ; <action> ... }
GO <start-address> FOR <interval> { ; <action> ... }

The interval may be expressed either directly by an event tick count, or as a realistic time value by a count and a
time unit. Time units may be MICROSECOND[S], MILLISECOND[S], or SECOND[S]; the abbreviations
USEC[S] and MSEC[S] may be used interchangeably for the first two units, respectively. The time delay
specified is a realistic time, i.e., one that represents wall-clock time when using the original hardware. Although
the simulator typically runs an order of magnitude faster than the original hardware did, a given time delay will
allow the CPU to execute approximately the same number of machine instructions as would be executed on real
hardware during that time.

Timed execution is useful to simulate computer operator response delays. For example, a GO FOR 5
SECONDS command might be inserted in a command file between a BOOT command and a REPLY
command. This would allow the operating system enough time to complete its startup process before
submitting the first operator command.

2.6 IF Command

The new IF command permits conditional execution of SCP commands. The command form is:

IF { -I } { -E } <comparative-expression> <action> { ; <action> ... }

The <comparative-expression> forms are:

<Boolean-expression>
<Boolean-expression> <logical> <comparative-expression>

The <Boolean-expression> forms are:

<quoted-string> <equality> <quoted-string>
<quoted-string> IN <quoted-string> { , <quoted-string> ...}
<quoted-string> NOT IN <quoted-string> { , <quoted-string> ...}
EXIST <quoted-string>
NOT EXIST <quoted-string>

The equality and logical operators are described below:

Type Operator Description

== Equal to
equality

!= Not equal to

&& And
logical

|| Or

The IN operation returns true if the first quoted string is equal to any of the listed quoted strings, and the NOT IN
operation returns true if the first quoted string is not equal to any of the listed strings. For example, these
command fragments:

IF "%1" IN "CPU","DISC","TAPE" ...
IF "%2" NOT IN "YES","NO","MAYBE" ...

...are equivalent to these more verbose forms:

IF "%1" == "CPU" || "%1" == "DISC" || "%1" == "TAPE" ...
IF "%2" != "YES" && "%2" != "NO" && "%2" != "MAYBE" ...

...respectively.

The EXIST operation returns true if the file specified by the quoted string exists. The NOT EXIST operation
returns true if the file does not exist.

If the comparative expression is true, the associated actions are executed. If the expression is false, the actions
have no effect. Adding the –I switch causes the string comparisons to be made case-insensitively. Adding the
–E switch causes the quoted strings to be scanned for escape sequence replacements; without the switch,
escapes are treated as ordinary characters. Comparisons are always textual; so, for example, "3" is not equal
to "03". Evaluation is strictly from left to right; embedded parentheses to change the evaluation order are not
accepted.

2.7 Quoting Actions

The BREAK, GO/RUN UNTIL, and IF commands each accept a list of action commands to be performed if the
condition is true or when the breakpoint occurs. If one of the action commands is itself one of these three, then
the actions may not be grouped with the correct actor. Consider, for example, a conditional command in a DO
command file that is intended to display a register value when a breakpoint is reached:

IF "%1" == "TEST" BREAK 100 ; EXAMINE A
GO

Assuming the test succeeds, the problem is that the EXAMINE command could be associated either with the
BREAK command or the IF command. If grouped with BREAK, it would be executed when the breakpoint
occurred and would display:

sim> BREAK 100 ; EXAMINE A
sim> GO

Breakpoint, P: 00100 (NOP)
sim> EXAMINE A
A: 000000

If grouped with IF, as indeed it will be, it would be executed immediately when the command was entered, and
the display would be:

sim> BREAK 100
sim> EXAMINE A
A: 000000
sim> GO

Consider also this command:

IF "%1" == "TEST" GO UNTIL "READY?" ; REPLY "YES\r"

This will not provide a response to the prompt. In fact, the reply will never be executed, as the GO command
clears any pending actions before resuming execution.

Another problem is that commands containing semicolons as parameter separators cannot be used as
breakpoint actions. For example, this command:

BREAK 100 ; SET CPU DEBUG=INSTR;DATA

...will fail when DATA is executed as the second action.

To resolve these ambiguities, the commands take action command lists as quoted strings, which are then
grouped as single commands. Using the above examples, the addition of surrounding quotes:

IF "%1" == "TEST" "BREAK 100 ; EXAMINE A"
IF "%1" == "TEST" 'GO UNTIL "READY?" ; REPLY "YES\r"'
BREAK 100 ; 'SET CPU DEBUG=INSTR;DATA'

...causes EXAMINE to be the action command for BREAK, and REPLY to be the action command for GO
UNTIL, instead of both being the second action command for IF, and causes the INSTR and DATA trace
options to be set, instead of failing with an Unknown command error.

2.8 GOTO Command

The new GOTO command is used within command files to transfer execution to a labeled statement. The
syntax is:

GOTO <label>

The label is a unique identifier that must appear, preceded by a colon (:), on a line by itself, somewhere within
the current command file. When the command is encountered, a case-sensitive search for the label begins at
the first line of the command file and extends through the file until the label is found; if it is not present, an
Invalid argument error is displayed.

The command may be used with the IF command and parameter substitution to provide conditional command
file behavior; for example:

IF "%1" == "REALISTIC" GOTO real

SET TTY FASTTIME
SET PTR FASTTIME
GOTO done

:real
SET TTY REALTIME
SET PTR REALTIME

:done

Computed GOTOs are also possible; for example:

IF "%1" IN "A","B","C" GOTO %1

ECHO Invalid option %1 was supplied.
GOTO done

:A
[...]
GOTO done

:B
[...]
GOTO done

:C
[...]
GOTO done

:done

In this case, the IF command is used to guard against specifying an illegal option and attempting to go to an
undefined label.

If the GOTO command is entered interactively at the SCP prompt, it is rejected with a Command not allowed
error.

2.9 CALL and RETURN Commands

The new CALL command is used within command files to transfer execution to a labeled subroutine. The
syntax is:

CALL <label> { <param> ... }

The command saves the current location in the command file and then performs a GOTO <label> to transfer
control to the start of the subroutine. Within the subroutine, the substitution variables %1 through %9
correspond to the CALL parameters; if fewer than nine parameters are passed, the corresponding substitution
variables are null. The value of the substitution variable %0 is the name of the file containing the command.

The subroutine returns to the line after the originating CALL command by executing the new RETURN
command. The syntax is:

RETURN

Executing a RETURN without a preceding CALL exits the command file as if a GOTO to a label immediately
preceding the end of the file were executed.

2.10 DELETE Command

The new DELETE command removes the host file specified in the command. The syntax is:

DELETE <filename>

The command provides a platform-independent way to delete files from a command file, for instance to delete
temporary files that were created by an ATTACH command:

ATTACH –N MS0 scratch.tape
[...]
DETACH MS0
DELETE scratch.tape

It is functionally identical to executing the host platform’s file deletion command (e.g., ! rm scratch.tape).

2.11 PAUSE Command

The new PAUSE command provides a platform-independent way to suspend command file execution for a
user-specified time interval. The syntax is:

PAUSE <time> <units>

The time is a decimal integer specifying the multiple of time units to wait. The time unit may be
MICROSECOND[S], MILLISECOND[S], or SECOND[S]; the abbreviations USEC[S] and MSEC[S] may be
used interchangeably for the first two units, respectively. Pauses shorter than one millisecond are rejected. A
command specifying a long pause, such as PAUSE 30 SECONDS, may be aborted by entering CTRL+E; SCP
responds with Command not completed if the full pause time did not elapse.

2.12 ATTACH and DETACH Commands

The existing ATTACH command is extended to permit terminal multiplexer lines to be connected to serial ports
as well as Telnet listening ports. The syntax is:

ATTACH <unit> <port-name>{;<rate>-<size><parity><stopbits>}

The unit name indicates the multiplexer line to attach; for example, MUX2 would indicate that multiplexer line 2
is to be connected to a serial port. The port name is the host-specific serial port name, e.g., COM1 or
/dev/ttyS0.

An optional serial port configuration string may be supplied after the host name. The required values are:

• rate is the baud rate in bits per second.

• size is the character size in bits including the parity bit, if designated.

• parity designates the parity to use: N (no), E (even), O (odd), M (mark), or S (space).

• stopbits is the number of stop bits (1, 1.5, or 2).

If the port configuration string is omitted, the default configuration specified by the host system for that port is
used. If the system default cannot be obtained, the command is rejected and reports Too few arguments.
This indicates that the ATTACH command must be reentered with the port configuration string added.

The existing DETACH command is extended to permit serial ports to be disconnected. The syntax is:

DETACH <unit>

...where the specified terminal multiplexer unit is currently attached to a serial port. Detaching a serial
connection has no effect on any Telnet connections that may be active.

2.13 SET Command

Two new SET command options have been added, and the existing SET CONSOLE command has been
extended.

2.13.1 SET BINARY

The new SET <device> <radix> command is enhanced to add setting the default output radix to base 2. The
command forms are now:

SET <device> BINARY
SET <device> OCTAL
SET <device> DECIMAL
SET <device> HEX

For example, the SET CPU BINARY command changes the default display of examined memory locations to
base 2.

2.13.2 SET ENVIRONMENT

The new SET ENVIRONMENT command creates a user-defined variable and sets its value. The command
forms are:

SET ENVIRONMENT <variable>=<value>
SET ENVIRONMENT <quoted-string> { , <quoted-string> ...}

The first form creates the variable and adds it to the host environment with the string value. Subsequently, it
may be referenced in other commands by bracketing the variable name with percent signs. For example:

SET ENVIRONMENT A=Hello
ECHO %A%
GO UNTIL "%A%"

The ECHO command will print Hello on the simulation console, and the GO UNTIL command will execute
machine instructions until the string Hello is output to the system console.

The second form consists of quoted variable assignments, separated by commas. This permits several
variables to be set to their corresponding values in a single command. The last assignment in the list may be
unquoted, if desired, with the value consisting of all characters remaining in the command. For example:

SET ENVIRONMENT 'B=YES','C=NO',D=MAYBE,E=UNSURE

...sets variable B to "YES", C to "NO", and D to "MAYBE,E=UNSURE".

If the assignment is not a quoted string, then escape sequences are not decoded. So the commands:

SET ENVIRONMENT 'F=\060'
SET ENVIRONMENT G=\060

...result in variable F having the value "0" and G having the value "\060". However, predefined and user-defined
variables may be used unquoted, and the values will be those at the time the command is entered. This
command may be abbreviated as SET ENV.

Note also that Windows and UNIX/Linux systems treat variable name case differently. On Windows, letter case
is preserved but not significant, whereas on UNIX/Linux systems, case is significant. Using the first example, an
ECHO %a% command will print Hello on Windows but nothing on UNIX/Linux.

2.13.3 SET CONSOLE CONCURRENT

The new SET CONSOLE CONCURRENT command establishes a mode that permits SCP commands to be
entered via the simulation console without stopping simulator execution. A typical example where this is helpful
is mounting a new magnetic tape reel on a tape drive.

Normally, mounting a new tape image requires stopping simulator execution with CTRL+E to obtain the SCP
command prompt, entering an ATTACH command to specify the tape image to mount, and entering a GO
command to continue execution. For example:

19:44/#S1/14/LOGON FOR: OPERATOR.SYS,OPERATOR ON LDEV #20
HP3000 / MPE V E.01.00 (BASE E.01.00). MON, APR 29, 1991, 7:44 PM
:[CTRL+E]

Simulation stopped, P: 071144 (PAUS 0)
sim> ATTACH MS0 backup.tape
sim> GO

19:44/10/Vol (unlabelled) mounted on LDEV# 7
:

While the simulation is stopped, the target operating system's time-of-day clock is stopped, so that each time the
simulation is stopped to enter SCP commands, the clock loses time. Moreover, all terminal multiplexer activity
is stopped as well, so that remote users will have their sessions freeze until simulation is resumed.

However, if concurrent mode is enabled, then entering CTRL+E displays a special SCP prompt (scp>) without
stopping simulator execution. While the scp> prompt is displayed and command characters are being entered,
the simulator continues to execute CPU instructions. When the ENTER key is pressed, simulation pauses just
long enough to perform the command before an implicit GO resumes instruction execution. For example:

:[CTRL+E]
scp> ATTACH MS0 backup.tape

19:49/10/Vol (unlabelled) mounted on LDEV# 7

:

If the system clock is set for calibrated timing, this small loss of time will be corrected automatically, and the
clock will continue to track wall-clock time.

The list of commands that may be entered at the scp> prompt is limited to those that do not interfere with
simulator execution or pause for input. Specifically, entering any of the commands listed below will result in a
Command not allowed error, and the command will be ignored.

Restricted Commands

IEXAMINE CONTINUE GET

IDEPOSIT BOOT LOAD

RUN SAVE DUMP

GO RESTORE !

STEP

Limited editing is provided at the scp> prompt. Pressing BACKSPACE deletes the last character entered, and
pressing ESCAPE clears all characters. Pressing ENTER with no characters present exits command mode and
returns keyboard control to the system console.

Pressing CTRL+E while at the scp> prompt stops simulation:

:[CTRL+E]
scp> [CTRL+E]

Simulation stopped, P: 071144 (PAUS 0)
sim>

That is, pressing CTRL+E twice in concurrent mode is equivalent to pressing it once in non-concurrent mode.

Concurrent mode is enabled by default. If the previous, non-concurrent mode behavior is desired, a SET
CONSOLE NOCONCURRENT command may be placed in the global startup file; see the Global Initialization
File section below for details.

2.13.4 SET CONSOLE SERIAL

The new SET CONSOLE SERIAL command provides an alternate connection for the system console when it is
separated from the simulation console. It complements the existing SET CONSOLE TELNET command.

For convenience and by default, the system console is connected to the simulation console, so that SCP and
HP operating system commands may be entered from the same window. However, the system console may be
separated from the simulation console by using the SET CONSOLE TELNET=<port> or SET CONSOLE
SERIAL=<port> command. This leaves the simulation console at the initiating window and moves the system
console to a Telnet or serial port, respectively, allowing the use of an HP terminal or terminal emulator. Entering
the existing SET CONSOLE NOTELNET or new SET CONSOLE NOSERIAL command will rejoin the consoles.

The command syntax is:

SET CONSOLE SERIAL=<port-name>{;<rate>-<size><parity><stopbits>}

The parameters to this command are identical to those specified for a serial ATTACH command, as described
above.

2.14 DO Command

The sense of the existing –E switch of the DO command has been reversed. In the absence of –E, command
file execution will now abort if a command returns an error. For example, a command file containing an
ATTACH –E command specifying a file that does not exist will fail with a File open error message, and
command file execution will stop. If the DO command specifies –E, however, then the command will fail but
command file execution will continue. With this reversal, an explicit override is now required if a command file is
to continue regardless of errors occurring.

The DO command is also extended to accept a new –A switch. In the absence of –A, the Breakpoint and Step
expired messages that normally result from BREAK, GO UNTIL, and STEP command completions are
suppressed, as are the informational messages from ATTACH and DETACH, such as Creating new file. This
provides a cleaner console display log when automated prompts and responses are used. For example, if a
command file contains:

GO UNTIL "Memory size? " ; ATTACH –N MS0 new.tape ; REPLY "1024\r" ; GO

...then running the command file with DO would display:

Memory size? 1024

...whereas using DO –A would display:

Memory size?
Breakpoint, P: 37305 (CLF 10)
MS: creating new file
1024

The new –A switch and the existing –E and –V switches now propagate to nested DO command files. For
example, invoking a top-level command file with DO –V will verbosely list not only that file's commands but also
the commands within any DO files invoked therein.

In addition, the DO command is extended to retry a failed command file open by appending the .sim extension
to the filename and trying again. That is, a DO file command will first try to open the command file named file
and then, if that fails, to open the file named file.sim.

2.14.1 DO and SET CONSOLE CONCURRENT

When a DO command is entered at the concurrent-mode scp> prompt, it behaves slightly differently from other
concurrent-mode commands. First, restricted commands within the DO file are allowed, so a command file may
contain GO UNTIL and REPLY commands, for example. However, if the file contains a command such as
IEXAMINE that pauses for user input, the target operating system's time-of-day clock will lose time. Second,
when the command file completes, simulation is resumed automatically, so a final CONTINUE or GO command
need not and should not be present.

A DO file that must run under both concurrent and non-concurrent modes may use the %SIM_RUNNING%
substitution variable to determine the current mode of execution. See the Variable Substitution section below
for details.

2.15 ABORT Command

The new ABORT command may be used within command files to stop execution and return to the SCP prompt.
In a nested command-file execution, ABORT terminates the current command file and all nested invocations.
By contrast, the RETURN command ends the current command file but continues execution of the invoking
command file. The syntax is:

ABORT

If concurrent mode is enabled for the console, ABORT may be entered at the scp> prompt to stop simulation
and abort command file execution. If simulation execution was initiated from a command file, the simulator will
stop, Command file execution aborted will be printed, and control will return to the SCP prompt. If execution
was initiated from the command line, ABORT is equivalent to entering CTRL+E to stop simulator execution.

ABORT is useful if a sequence of prompt/response pairs in a command file is not executing properly. Consider
a command file containing this sequence of commands:

GO UNTIL "OPTION? " ; REPLY "RELOD\r"
GO UNTIL "CHANGES? " ; REPLY "YES\r"
GO UNTIL "MEM SIZE? " ; REPLY "128\r"
GO UNTIL "SEG SIZE? " ; REPLY "8192\r"
[...]

When the command file replies with the misspelled RELOAD option, the executing program prints an error

message and repeats the OPTION? prompt. The command file, however, is now looking for the CHANGES?

prompt and so does not supply the YES reply. At this point, entering CTRL+E stops simulated execution, but the

command file then resumes execution with the next prompt and reply. This continues until enough CTRL+Es
are entered to exhaust the set of prompts and responses in the command file.

This may be avoided by entering ABORT in concurrent mode after the first CTRL+E. This stops the simulator,
as well as command file execution at that point.

2.16 Aborting Command File Execution

Improper use of the GOTO command can lead to command file infinite loops. To abort command file execution
in such cases, enter CTRL+C (not CTRL+E). For example, executing this command file:

:label
GOTO label

...with a DO command will loop forever. Entering CTRL+C will stop execution with Command file execution
aborted, and control will return to the SCP prompt.

CTRL+C is used because an infinite loop may contain commands that respond to CTRL+E. Using CTRL+C
ensures that command file execution, and not an individual command, is aborted.

2.17 FLUSH Command

To improve performance, all simulator log files and most attached device files are buffered. When a simulation
stop occurs, buffered files are flushed to the host system disc before returning to the SCP prompt to permit
external examination. With concurrent mode enabled by default, most simulation stops are avoided, so files will
be only partially written when examined externally. In particular, trace and console logs will be incomplete
unless the simulator is stopped and restarted, which defeats the purpose of enabling concurrent mode.

To avoid this, the new FLUSH command may be entered at the concurrent-mode prompt to force physical disc
writes for active files. The command form is:

FLUSH

For files that are open, the command flushes the console and debug log files, the files attached to all of the units
of all devices, and log files associated with terminal multiplexer lines. Flushing does not disturb any of the
affected files; it merely ensures that all writes are physically completed and the associated file contents are
current.

FLUSH commands are accepted after a simulation stop. However, they have no effect, as the stop caused all
files to be flushed automatically.

2.18 SHOW Command

The existing SHOW BREAK command is enhanced to display string breakpoints as well as address
breakpoints. String breakpoints are identified by the console output unit name in the display. For example:

sim> BREAK -T "hello" DELAY 6
sim> BREAK –S 00100
sim> SHOW BREAK
TTY1: T "hello" delay 6
100: S
sim>

The new SHOW REPLY command displays any pending reply. The reply is displayed with the console input
unit name. For example:

sim> REPLY "hi" DELAY 100
sim> SHOW REPLY
TTY0: "hi" delay 100
sim>

The new SHOW DELAYS command displays the current default break and reply delays:

sim> SHOW DELAYS
Break delay = 1000
Reply delay = 0
sim>

The delays are expressed as event tick counts and will be zero unless they have been changed with BREAK
DELAY or REPLY DELAY commands, respectively.

The existing SHOW CONSOLE command is enhanced to display the concurrent mode setting. If the console is
connected to a serial port, the SHOW CONSOLE and SHOW CONSOLE SERIAL commands display the serial
connection status.

2.19 Variable Substitution

Each command line is scanned for predefined and user-defined variables, which are replaced with their
corresponding values. Variables are bracketed by percent signs (%). The predefined variables are:

Variable Name Description

DATE_YYYY The current year, 0000-9999

DATE_YY The current year, 00-99

DATE_MM The current month, 01-12

DATE_MMM The current month, Jan-Dec

DATE_DD The current day of the month, 01-31

DATE_JJJ The current (Julian) day of the year, 001-366

DATE_RRRR A year with the same calendar days as the current year, rescaled to 1972-1999

DATE_RR A year with the same calendar days as the current year, rescaled to 72-99

TIME_HH The current hour, 00-23

TIME_MM The current minute, 00-59

TIME_SS The current second, 00-59

SIM_MAJOR The simulator major version number

SIM_NAME The name of the simulator

SIM_EXEC The path and name of the simulator executable file

SIM_RUNNING A non-zero value if the simulator is executing instructions

The date and time variables are useful when setting the system clock after operating system startup. For
example:

GO UNTIL "DATE?" ; REPLY "%DATE_MM%/%DATE_DD%/%DATE_YY%\r" ; GO

If the target operating system is not year-2000 compliant, the %DATE_RRRR% variable will give a year
between 1972 and 1999 that has the same calendar days as the current year. For example, if the current date
is Monday, February 29, 2016, %DATE_RRRR% will yield 1988, as February 29, 1988 is also a Monday.

The %SIM_MAJOR% variable may be used to ensure that the commands in a DO file are available with the
current version. For example:

IF "%SIM_MAJOR%" == "3" GOTO ok
ECHO This command file requires SCP version 3.
ABORT

:ok

The %SIM_NAME% variable contains the name of the simulator as it appears in the SHOW VERSION
command. It may be used to condition parts of a generic DO command file for specific simulators.

The %SIM_EXEC% variable contains the path and name of the executable file used to start the simulator. It
may be used to start a second copy of the simulator, e.g., to start the I/O processor instance for the dual-CPU
HP 2000 Time-Shared BASIC system:

; Start the IOP.

! %SIM_EXEC% iop.sim

The %SIM_RUNNING% variable may be used within DO command files that are invoked both when the
simulator is stopped and when it is executing in concurrent mode. If %SIM_RUNNING% has the value 0, a
CONTINUE or GO command is required to resume simulator execution. If the value is 1, the simulator is
already running, and the CONTINUE or GO command must be omitted.

In addition to the predefined variables, environment variables, including those established by the SET
ENVIRONMENT command, may be specified for substitution. If an undefined variable is specified, the resulting
substitution value is a null string. For example:

sim> ECHO Hel%UNDEFINED%lo
Hello

For commands that take action lists, such as BREAK and IF, variables in the action list are substituted when the
command is entered, as well as when the action occurs. So, for example:

sim> SET ENV REG=A
sim> BREAK 10 ; EXAMINE %REG%
sim> SET ENV REG=B
sim> GO

Breakpoint, P: 00010 (NOP)
sim> EXAMINE A
A: 000000
sim>

Register A is displayed because the variable substitution was performed when the BREAK command was
entered. To defer evaluation until the action occurs, surround the variable with double percent signs:

sim> SET ENV REG=A
sim> BREAK 10 ; EXAMINE %%REG%%
sim> SET ENV REG=B
sim> GO

Breakpoint, P: 00010 (NOP)
sim> EXAMINE %REG%
B: 000000
sim>

BREAK command entry processing substitutes single percent signs for the double percent signs before the
action is stored. When the action is executed, the resulting percent-enclosed variable is substituted.

2.20 Global Initialization File

During simulator startup, a new global initialization command file named simh.ini is executed if it is present. The
commands in this file are executed before those in the simulator-specific initialization file (e.g., hp3000.ini) or the
startup file specified on the command line that invokes the simulator. Commands in this file may be used to
change global simulator behavior; for example:

SET CONSOLE NOCONCURRENT
SET CONSOLE DEL=177

The search for this file begins in the current directory. If the file is not found there, then the directory specified
by the HOME environment variable is searched (or, if HOME is not defined, then the directory specified by the
USERPROFILE variable is searched).

If a startup filename and parameters were passed on the simulator invocation command line, then they will be
available via the standard substitution variables %1 through %9, where %1 will be the startup filename, %2 will
be its first parameter, etc. If %1 is null, then no startup filename was passed, and the simulator-specific
initialization file will be executed after the global file completes.

Commands within the global file may be qualified for a specific simulator by using the IF command with the
%SIM_NAME% substitution variable as a condition. For example:

IF "%SIM_NAME%" == "HP 3000" SET CPU STOP=LOOP
IF "%SIM_NAME%" == "HP 2100" SET CPU STOP=UNSC

Normally, the simulator-specific initialization file would be a better location for such commands. However, note
that this file is not executed if a command file is specified when invoking the simulator. Placing the commands
in the global file ensures that they are executed regardless of the manner in which the simulator is started.

To summarize, at simulator startup:

1. If the simh.ini global initialization file exists in the current working directory or the directory indicated by
the HOME (or USERPROFILE) environment variable, it is executed.

2. If a filename was specified on the invocation command line, then if the file exists, it is executed;
otherwise, the Can't open file message is printed. If no filename was specified, then if the simulator-
specific initialization file exists in the directory containing the simulator executable, it is executed.

This logic is expressed in the flowchart on the following page.

As consequences of the search order, an empty simh.ini file in the working directory will override one in the
HOME directory, and specifying a command file of NUL (or /dev/null, etc.) when invoking the simulator will
override execution of the simulator-specific initialization file.

Start

simh.ini
exists in
cwd?

simh.ini
exists in
home?

Execute

cwd/simh.ini

Execute

home/simh.ini

command-
line file

specified?

command-
line file
exists?

Execute
command-line file

hpnnnn.ini
exists in
bin?

Execute

bin/hpnnnn.ini

End

Can't
open file

Startup Command File Execution Sequence

Yes

Yes

Yes

Yes

No

No

No

No

Yes

No

Key:

cwd = current working directory

home = user's home directory

bin = simulator executable directory

Yes

3 SCP 4.x-to-3.x Conversion

Simulated machine instruction execution operates identically, regardless of the SCP version. However,
command files that were written for SCP 4.x may have to be altered to run on SCP 3.x. The latter omits some
4.x commands and uses different syntax for others. These considerations are described below.

3.1 Unimplemented Commands

The following SCP 4.x commands are not implemented (although some have SCP 3.x replacements; see the
next section for details):

Command Name(s) Description

EXPECT Stop execution when specific output is seen

SEND Insert characters into the input stream

CD Change the working directory

PWD Display the working directory

DIR, LS List the files in the working directory

TYPE, CAT Display the contents of a file

RM Delete a file

COPY, CP Copy a file

SHIFT Shift the command file parameters

ON Configure error trapping

PROCEED, IGNORE Continue command file execution after trapping

ELSE Execute commands for a false IF conditional

ECHOF Display text within a quoted string

SLEEP Suspend simulator execution for a time interval

The following 4.x SET command options are not implemented:

Option Name(s) Description

REMOTE Configure a remote console

DEFAULT Set the current working directory

CLOCK Set clock calibration parameters

ON, NOON Enable or disable error trapping

VERIFY, NOVERIFY,
VERBOSE, NOVERBOSE

Enable or disable command file execution display

MESSAGE, NOMESSAGE Enable or disable command file execution error display

QUIET, NOQUIET Enable or disable miscellaneous information messages

PROMPT Change the SCP prompt

The following 4.x SHOW command options are not implemented:

Option Name(s) Description

FEATURES Display the simulator device feature descriptions

REMOTE Display the remote console configuration

DEFAULT Display the current working directory

ON Display enabled error trapping actions

SERIAL Display the available host serial ports

MULTIPLEXER Display open multiplexer device information

EXPECT Display pending EXPECT commands

SEND Display pending SEND commands

3.2 SCP 3.x Replacements

Several of the SCP 4.x commands and SET/SHOW command options are replaced by equivalent or alternate
3.x commands. These are described below.

3.2.1 Quoted Strings

Within quoted strings, the unsupported \f, \t, \v, \b, \e, and \? escapes, as well as \xnn hexadecimal escapes
are replaced with their equivalent \nnn octal escapes.

3.2.2 EXPECT and SHOW EXPECT

The EXPECT command is replaced with string breakpoints, and the HALTAFTER= option is replaced with
DELAY. For example, these commands are equivalent:

[4.x] EXPECT HALTAFTER=5000 "Memory size?"

[3.x] BREAK –T "Memory size?" DELAY 5000

Breaking on output to terminal multiplexer lines or after specified match counts is not currently supported.
Multiple concurrent breakpoints for the same string are not supported, so it is not possible to queue up a series
of prompts and responses and then have them trigger in sequence. Instead, each prompt and response pair
must be interleaved with simulator execution.

It is possible to queue up a sequence of unique prompts, but it is not recommended. Each output character
must be compared to all existing string breakpoint match strings, so having multiple existing breakpoints when
only one will be triggered is inefficient. A series of GO UNTIL and REPLY commands will execute more quickly
than the same number of queued BREAK –T commands. The use of queued breakpoints should be reserved
for those situations where an extra prompt might appear. For example, the HP 2000F system will ask for
confirmation of the system startup date if the last shutdown was more than four days in the past. In this case, a
queued response is appropriate:

GO UNTIL "DATE? " ; REPLY "%DATE_JJJ%/%DATE_YY%\r"
GO UNTIL "TIME? " ; REPLY "%TIME_HH%%TIME_MM%\r"
BREAK -T "ARE YOU SURE THAT'S TODAY'S DATE? " ; REPLY "YES\r" ; GO
GO UNTIL "READY\r\n"
[...]

All string breakpoints are evaluated independently, so if BREAK "HE" and BREAK "HELLO" commands have

been entered, both breakpoints will trigger in succession if Hello is output on the console.

The SHOW EXPECT command is replaced with SHOW BREAK, which has been enhanced to display pending
string breakpoints in addition to address breakpoints, and SHOW DELAYS, which displays the default break
delay.

3.2.3 SEND and SHOW SEND

The SEND command is replaced with REPLY, and the AFTER= option is replaced with DELAY. For example,
these commands are equivalent:

[4.x] SEND AFTER=5000 "1024\r"

[3.x] REPLY "1024\r" DELAY 5000

Supplying responses to terminal multiplexer lines, specifying time delays between supplied characters with
DELAY=, and specifying response delays in microseconds with the –T switch are not supported. Response
delays in microseconds may be specified by including the keyword MICROSECONDS or USECS after the
DELAY value, but the delay is a realistic time (i.e., time as seen by the program), rather than the calibrated time
(time as seen by the user) provided by the –T switch. The default REPLY delay is zero rather than 1000
machine instructions.

Each REPLY command replaces the prior one, rather than appending to the prior one as SEND does. So these
commands:

SEND "YES\r"
SEND "NO\r"

...must be replaced with the single command REPLY "YES\rNO\r". Simply substituting REPLY for SEND
above results in "NO\r" as the only pending reply.

The SHOW SEND command is replaced with SHOW REPLY, which displays pending replies, and SHOW
DELAYS, which displays the default reply delay.

3.2.4 SLEEP

The SLEEP command is replaced by PAUSE. The PAUSE time must be an integer rather than a floating-point
value, but PAUSE allows specification of millisecond values. Units of minutes, hours, and days are not
supported, but times in these ranges may be specified as the equivalent number of seconds. For example,
these commands are equivalent:

[4.x] SLEEP 2D

[3.x] PAUSE 172800 SECONDS

[4.x] SLEEP 0.5S

[3.x] PAUSE 500 MILLISECONDS (or MSEC or MS)

A PAUSE may be aborted by entering CTRL+E, while a SLEEP is aborted by CTRL+C.

3.2.5 Host File System Commands

The CD, PWD, DIR, LS, TYPE, CAT, COPY, and CP commands may be replaced with host-specific spawn
commands. For example, the ! dir command is equivalent to the DIR command. The supported DELETE
command is equivalent to RM.

3.2.6 IF...ELSE

The effect of ELSE may be emulated by a second IF statement testing the opposite condition; for example:

IF "%DATE_MM%" == "1" ECHO It is January
ELSE ECHO It is not January

...may be replaced with:

IF "%DATE_MM%" == "1" ECHO It is January
IF "%DATE_MM%" != "1" ECHO It is not January

An ELSE covering multiple statements may be replaced with a GOTO to route control to the statements for the
false conditions.

3.2.7 SET REMOTE and SHOW REMOTE

Concurrent mode, enabled by the SET CONSOLE CONCURRENT for the simulation console, is similar to the
Single Command Mode of the SET REMOTE command, in that SCP commands may be entered without
stopping simulator execution. However, concurrent mode does not support redirecting the simulation console to
a Telnet connection (note that SET CONSOLE TELNET redirects the system console, not the simulation
console). SCP 4.x Multiple Command Mode and Master Mode have no SCP 3.x analogs.

The 3.x SHOW CONSOLE CONCURRENT command is analogous to the 4.x SHOW REMOTE command.

3.2.8 Miscellaneous Commands

The SHIFT, ON, PROCEED, and IGNORE commands have no corresponding SCP 3.x analogs.

The ECHO command may substitute for the ECHOF command in most cases.

3.3 SCP 3.x Differences

Some SCP commands common to both 3.x and 4.x differ in their implementations. The authoritative sources for
3.x command behaviors are this manual and the SIMH Users' Guide manual. Prominent differences are noted
below.

3.3.1 Initialization File Search Order

The order in which the search for the global simh.ini file proceeds differs from 3.x to 4.x. The 3.x order is the
current directory, then either the HOME directory or the USERPROFILE directory. The 4.x order is either the
HOME directory or the HOMEDRIVE/HOMEPATH directory, then the current directory.

3.3.2 Serial Port Names in ATTACH and DETACH Commands

In addition to host-specific serial port names (such as COM1), SCP 4.x accepts equivalent internally generated
names of the form serN, where N is a sequence number identifying one of the host-specific ports. SCP 3.x
accepts only those port names provided by the host.

3.3.3 IF Command

SCP 4.x requires parentheses around comparative expressions containing logical AND and OR operators. SCP
3.x does not recognize parentheses; including them will result in an Invalid argument error.

3.3.4 HELP Command

The SCP 4.x HELP command provides extensive descriptions of commands and their parameters, often
containing information that is not present in the SIMH Users’ Guide, V4.0 manual. In contrast, SCP 3.x provides
only one-line command summaries. Thorough command and parameter descriptions are provided in the
applicable 3.x users' guides; the online help is intended only as a quick reference.

3.3.5 Predefined Substitution Variables

The set of predefined substitution variables is smaller in SCP 3.x vs. 4.x. In addition, the DATE_19XX_YYYY
and DATE_19XX_YY variables that provide the current year rescaled to the 20

th
 century are named

DATE_RRRR and DATE_RR, respectively, in 3.x.

3.3.6 Command Option Switches

Option switches for common commands that are present in 4.x but are not documented here or in the SIMH
Users' Guide manual are not supported. Unsupported switches are ignored.

	Introduction
	Unpacking and Compiling the Simulator

	Simulator Control Program Extensions
	Quoted Strings
	BREAK Command
	REPLY Command
	GO UNTIL and RUN UNTIL Commands
	GO FOR and RUN FOR Commands
	IF Command
	Quoting Actions
	GOTO Command
	CALL and RETURN Commands
	DELETE Command
	PAUSE Command
	ATTACH and DETACH Commands
	SET Command
	SET BINARY
	SET ENVIRONMENT
	SET CONSOLE CONCURRENT
	SET CONSOLE SERIAL

	DO Command
	DO and SET CONSOLE CONCURRENT

	ABORT Command
	Aborting Command File Execution
	FLUSH Command
	SHOW Command
	Variable Substitution
	Global Initialization File

	SCP 4.x-to-3.x Conversion
	Unimplemented Commands
	SCP 3.x Replacements
	Quoted Strings
	EXPECT and SHOW EXPECT
	SEND and SHOW SEND
	SLEEP
	Host File System Commands
	IF...ELSE
	SET REMOTE and SHOW REMOTE
	Miscellaneous Commands

	SCP 3.x Differences
	Initialization File Search Order
	Serial Port Names in ATTACH and DETACH Commands
	IF Command
	HELP Command
	Predefined Substitution Variables
	Command Option Switches

