q7vD viva
3 H1S 139
YD viva

via- 8sr
¥yy1i+ asr
HY¥YI 84071

DATA CALL.

«IAR

HEWLETT-PACKARD
SOFTWARE CENTER

CONTRIBUTED PROGRAM

SNOBOL COMPILER FOR DOS/DOS-M
HP 22327E

MAY 1973

THE HEWLETT—PACKARD COMPANY MAKES NO WARRANTY, EXPRESSED
OR

IMPLIED, AND ASSUMES NO RESPONSIBILITY IN CONNECTION WITH
THE OPERATION OF THE PROGRAM MATERIAL ATTACHED HERETO.

1.0

1.1

1.2

1.3

2.0

HEWLETT-PACKARD SOFTWARE CENTER
CONTRIBUTED PROGRAM DOCUMENTATION FORM

IDENTIFICATION HP 22327

Program Title

SNOBOL COMPILER FOR DOS/DOS-M
Program Language (s)

[] FORTRAN II [] FORTRAN IV
[] HP BASIC [] ALGOL
[X] Assembly Language ([X] Relocatable [] Absolute)

Program Type

[X] Program [] Subroutine [] Function

[] Other

PROGRAM DESCRIPTION

SNOBOL is a language translator destgred for the manipulation of strings.
Features of the language include symbolic naming of strings and pattern-
matching. In addition to a basic set of primitive string valued functions,
the system includes the facility for defining functions. These defined
functions facilitate the programming of recursive procedures.

A string may be any sequence of characters. Thus, it is possible to
represent a number with as many digits as we want. A1l arithmetic
expressions can be evaluated in SNOBOL.

"EXTENDED SNOBOL3 HP FRANCE" contains some improvements: For example:

- The size of numbers is not limited and it is possible to use arithmetic
expressions not completely parenthesized.

- It is possible to use not only integers but decimal numbers with
unlimited precision.

(Continued next page)

CONTRIBUTED PROGRAM DOCUMENTATION FORM

2.0 PROGRAM DESCRIPTION (Continued)

SNOBOL is usable in many differents kinds of
jolks. We can give as examples :

Text _formatting, text editing (see the

demonstration program IncIuded).

Text analysis (We have in Paris, a professor

In"one University using SNOBOL to study the
manner of writing of a French author).

High precision arithmetic (see example joined.

For "demonstration, we have calculated v and
e with 1000 decimals).

Automatic_translation. We have one program

- G g G S G G PR S = Gme S e e .

running In Orsay :

To translate a BASIC program into a
FORTRAN IV program.

(continued next page)

CONTRIBUTED PROGRAM DOCUMENTATION FORM

2.0 PROGRAM DESCRIPTION (continued)

- Business

"EXTENDED SNOBOL3 HP FRANCE" allows to dyna-
mically (at execution time) give the number

of decimal digits to use in the representation
of a number. So, it is possible very easily

to write business programs even for large
number manipulation.

(see one program included, written for the
financial manager of HP FRANCLE)

(see included one program written in SNOBOL

and allowing) :

- To enter a formal expression

- To completely parenthetize this expression
- To derivate the expression 2

- To simplify expression 3

- To print the formal derivate

U & W N

It is constituted mainly of a compiler, a loader
and an interpretor. Intermediate language is relo-
catable, Imtermediate languages produced by BCS,
DOS or DOS-M are compatible.

When DOS or DOS-M are used, it is possible with
only one conscole (or batch) command to :
1 ~ Clear the job binary area

2 - Compile the program and store rclocatable
on jbin.

3 - Load the program
4 - Execute it

(continued next page)

CONTRIBUTED PROGRAM DOCUMENTATION FORM

2.0 (continued)

The program uses a sophisticated allocation
of memory garbage collection technigue, All
output are buffered.

Frangois Gaullier (new system analyst) and

Frangoise Mons (Data-Center probationer) par-
ticipated to the writing of SNOBOL

END 2.0

3.0

3.1

3.2

3.3

3.4

3.5

CONTRIBUTED PROGRAM DOCUMENTATION FORM (2)

ENVIRONMENT DESCRIPTION

The environment describes the special hardware and software necessary
to use the contributed program.

Supported Software Requirements - Operating System

[X] BCS [X] pos [¥ DOS-M

[] MTS [] DACE [1 MEDACE

[] SIO System [1 HP BASIC Version [] Other
[] Educational BASIC Version [] Self-contained

Non-Supported Software Requirements

Name and order number of subprograms called by the contributed program.

Storage Requirements

FORTRAN, ALGOL, Assembly Language (to be completed by HPSC):
*Only a short program (approximately
(*16K),, without external subprograms 100 Tines) can be written with 16K.

(*16K 24K is more realistic.

)10 with external subprograms

BASIC: [] 8K [] 16K [] Other

Core Allocation List

[x] Enclosed [1N/A

Hardware Requirements

16K DOS or DOS-M System

CONTRIBUTED PROGRAM DOCUMENTATION FORM (3)

4.0 USER PROCEDURES AND DATA REQUIREMENTS

* Number of different source tapes included in this package

(programs, subprograms, test programs, data tapes, etc.)

Tapes will be strung together for distribution.

Control statement on source tape? [] No [X] Yes See below
(Indicate)

*Source is on one mag tape in five files:

SNOB ASMB,L,Z,C
SNOBg@ ASMB,L,Z,C
SNOBL ASMB,L,Z2,C
SNOBC ASMB,L,Z
SNOBI ASMB,L,Z

Assemble with X,N for Non-EAU version.
Assemble with Z for EAU version.

Usual load procedures
:PR, SNonpl 'pz ,P3 ,p4 ’ 99

where
p! = Logical unit of input device (Standard is 5; set to 2 for
source file input)
p2 = Logical unit of list device
(Standard is 6)
p3 = Logical unit of punch device
(Standard is 4)
p4 = @ for compilation
P for immediate RUN
p4 = logical unit of input device of SNOBOL relocatable)
Standard is 0)
99 = The job binary parameter. If present, the object program is
stored in the job binary area- for immediate loading and running.
Any requested punch output still occurs.
(Ige ?? ga occur anywhere in the parameter list, but terminates
e list.

pl through p4 are optional. If not present, the standard operation is assumed.

CONTRIBUTED PROGRAM DOCUMENTATION FORM (3)
4.0 B (continued)

EXTENDED SNOBOL3 HP FRANCE

ERROR CODES SNOBOL3

During the execution, if an error occurs, the
Snobol print the following error message :

ERREUR XXXX A LA LIGNE YYY

Where

YYY is the number of line, where the error occurs

XXXX is the code number of error as fellow :

CONTRIBUTED PROGRAM DOCUMENTATION FORM (3)

4.0 C (continued)

10

11
12

13

CODE NUMBER

SIGNIFICATION

Function failed in go to field,
indicating a function call failed
which evagluating a go to field

Memory overflow

Attempt to transfer to an unde-
fined 1label

Indirect reference through the
null string

Indirect reference through the
null string, indicating an attempt
to use the null string as a name

Indirect reference through the
null string, indicating an attempt
to use the null string as a name

Illegal operator in arithmetic
operation (addition)

Illegal operator in arithmetic
operation (soustraction)

Illegal operator in arithmetic
operation (multiplication) 2°
operator

Illegal operator in arithmetic
operation (multiplication) 1°
operator

Illegal operator in arithmetic
operation (division)

Division by @ is attempted

Attempt to call an undefined
function

Function entered other than by
call, indicating an attempt to
return from a defined function
which has not been called

4.0 D (continued) CONTRIBUTED PROGRAM DOCUMENTATION FORM (3)

14 Incorrect number of arguments
during the call of a defined
function

15 Too many elements in a pattern
matching

16 Error in lenght specifier
Ex 3

*F/A% where
A is not integer Snobol

17 Incorrect number in the call of
FLOAT (N),
Ex :

FLOAT ("ABC") or
FLOAT("1.23") or
FLOAT ("-125")

18 Number of decimal overflows during
an arithmetic operation

19 Illegal operator in arithmetic
operation (Exponentiation)
Exponant is not integer

20 Illegal operator in arithmetic
operation (Exponentiation)
Exponant is greater than 32767

21 Illegal operator in arithmetic
operation (Exponentiation)
Exponant is negative with the
integer mode

Ex :
FLOAT ("@")
X=3.74 + 1,2
22 Number of decimals overflows during

an exponentiation

23 Illegal operator in arithmetic
operation (Exponentiation)

CONTRIBUTED PROGRAM DOCUMENTATION FORM (3)
4.0 E (continued)

24 Call of an defined function
occurs alone on a statement

25 Attempt to output a string with more
than 4096 characters

After printing this message, Snob aborts.

4.0 F (continued) CONTRIBUTED PROGRAM DOCUMENTATION FORM (3)

MESSAGES TO OPERATOR DURING COMPILATION

This message is printed on the operator console when an
end-of-tape occurs on device # n.

I/0 ERR ET EQT # n
EQT5¢ n is unavailable until the operator declares it up.

3UP'n
+GO

Compilation continues after the GO,

At the end of compilation, if the 99 parameter i1s not present,
the following message is printed :

BEND SNOB

If the 99 parameter is present and if no error occurs during
compilation, the object program is loaded and it runs immedia-
tly. If errors occurs during compilation, the following mes-
sage is printed :

PAS D'INTERPRETATION POSSIBLE
and SNOB stops.

If source input for logical unit 2 (disc) is requested but no
file has been declared (by a JFILE command), the system
teleprinter signals

BEND SNOB NPRG

for all the other input logical units, the following mes-
sages are printed :

LOAD TAPE
SNOB SUSP

The SNOBOL suspends. The operator places a tape in the input
device and types :

:GO

CONTRIBUTED PROGRAM DOCUMENTATION FORM (3)
4.0 6 (continued)

If the job binary area (where binary code is stored by a
99 parameter) overflows, compilation continues but the
following message is printed on the system teleprinter

JBIN OVF

and the object program is not loaded at the end of the
compilation.

If an error is found .in the SNOBOL Control statement,
the following message is printed on the system teleprinter :

BEND SNOB CS

and SNOB stops.

At the end of the execution, the SNOBOL system writtes on
the system teleprinter.

SNOBOL. HP FRANCE ~ FIN DE L'EXECUTION
ZBPKXX GARBAGES

At this point, it is possible to keep the Snobol-relocatable
on a relocatable file by a : STORE,R,NAME

- Before the END of JOB, and after an execution with the 99
parameter, the program can be executed any time by the
directive,

:PR,SNOB,' ',2,99

If the Snobol-relocatable paper tape has been punched, there
is possible to execute the Snobol program by the directive,
without compilation.

:PR,SNOB,,,.5
or by the directive (if the relocatable is on a relocatable file.)

:PR,SNOB, ,,,2

CONTRIBUTED PROGRAM DOCUMENTATION FORM (3)
4.0 H (continued)

SNOBOL CONTROL STATEMENT

The Control Statement must be the first statement of
the source program ; it directs the compiler.

SNOBOL, p; . P2

Where p; and py are optionals and equals to B
or L.

B = Binary output, snobol-relocatable
is punched during the compilation,
After the binary can be loaded by
the command :PR,SNOB,,,,5 or
:PR,SNOB, ,,,2
i1f the binary has been stored on
a relocatable file, by a :STORE,R directive.

L = List output. A listing of the source
langage program is to be produced
during the compilation.

CONTRIBUTED PROGRAM DOCUMENTATION FORM (4)

5.0 SUBPROGRAM INFORMATION

5.1 Entry Point(s)
N/A

CONTRIBUTED PROGRAM DOCUMENTATION FORM (5)

5.0 SUBPROGRAM INFORMATION (cont.)

5.2 Additional Exits (From a Subprogram)

N/A

6.0 SPECIAL CONSIDERATIONS

SNOBOL EXAMPLES all by PAUL GARAVINI:
HEWLETT-PACKARD FRANCE
QUARTIER DE COURTABOEUF
BOITE POSTALE 6
F - 91, ORSAY
FRANCE

CONTRIBUTED PROGRAM DOCUMENTATION FORM (6)

7.0 EXAMPLE INPUT/OUTPUT (Test Case)

See enclosed examples.

8.0 LITERATURE REFERENCE

The Bell System Technical Journal, July-August 1966,
"The SNOBOL3 Programming Language" by D.J. Farber, R.E. Griswold,
and I.P. Polonsky (included with this documentation).

SNOBOL3 Primer, by Allen Forte, the MIT Press, Cambridge, Mass., 1967.
(Written for a person with no previous computer experience).

RELOCATING LOADER
NAME/ZENTRY ADDR

*LOBEG -
»MOUVE
»RRL B

»LECRU (4169
___.0PSY 185
W OPEV

S

3

i

“XNBUF 35704
QDPSY ‘36‘2B

** THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

THE SNOBOL3 PROGRAMMING LANGUAGE *
Original Manuscript By D. J. Farber, R. E. Griswold and I. P. Polonsky *
(Manuscript received March 4, 1966)

SNOBOL3 is a programming language designed for the manipulation
of strings. Features of the language include symbolic naming of strings and
pattern matching. In addition to a basic set of primitive string-valued
functions, the system includes the facility for defining functions. These
defined functions facilitate the programming of recursive procedures.

This paper presents an intuitive description of SNOBOL3 and at the
same time incorporates complete reference material for the programmer,

(*)

1. INTRODUCTION

In recent years a number of high-level programming languages have
been developed to extend the usefulness of the computer in dealing
with primarily nonnumerical problems. The most widely used 1anguages
have been IPL, LISP, and COMIT. In 1962 SNOBOL was developed for ,
problems involving the manipulation of character strings. The basic
operations of SNOBOL permit the formation, examination, and rear-
rangement of strings. SNOBOL3 is a generalization and extension of SNOBOL.
New features include string-valued functions and input-output facilities
integrated into the string structure of the language. There are two types
of functions: primitive functions that are included in the system and
?efined functions that are defined by the programmer in the SNOBOL3
anguage.

This paper is a description of SNOBOL3 as a programming language.
Emphasis is placed on the language as distinct from its implementation.
In order to provide information for the potential programmer, however,
some references to the implementation are necessary. There are several
implementations of SNOBOL3 which differ in detail, particularly with
regard to input-output.)

* This article has been modified for use with HP SNOBOL,
Omitted paragraphs have been denoted by an (*).

A vertical bar signifies an addition to the original article.

**COPYRIGHT, 1966, AMERICAN TELEPHONE & TELEGRAPH COMPANY, reprinted by permission."

896 The Bg]] System Technical Journal, July-August 1966

Areas where other implementations are likely to differ are noted in the
applicable sections.

Section II describes briefly and informally the essential features of
the language. This section is designed as a survey to provide an under-
standing of the general nature and capabilities of the language. Section
IIT is an elaboration of Section II completing the description of the
language. Sections II and III together provide a reference source for
the programmer. Section IV describes the environment in which the
language operates, including information which the programmer will
find useful in running programs.

II INFORMAL DESCRIPTION

SNOBOL3 has just one type of basic data structure: a string of
characters. The primitive operations of the language provide for the
formation, examination and rearrangement of strings. Arithmetic is defined for
operands that are integer or decimal strings. The operations to be per-
formed are specified in statements that may also be labeled and may have
go-to's specifying transfers. A SNOBOL3 program consists of a sequence
of statements terminated by an END statement.

2.1 Names

A symbolic name can be assigned to a string and used as a means of
referring to that string. There are several ways in which a name can
be assigned a value. The simplest is the assignment statement. For
example, the statement

VOWELS = 'AEIOU'

assigns the string AEIOU as the value of the name VOWELS. The

string consisting of a pair of quotation marks enclosing a string of
characters is a literal specifying the string AEIOU. The string VOWELS
appearing to the left of the equal sign is a name. A name that has been
assigned a value can be used whenever it is necessary to refer to that
value, Thus,

NON.CONST = VOWELS
causes NON.CONST to have the same value as VOWELS. The null
string, having length zero, can be assigned explicitly as value as in the
statement

ZIP =

897 The Bell System Technical Journal, July-August 1966

2.2 Concatenation

The basic operation of concatenation of strings is indicated by listing
the names successively. The names are sgparated by blanks. Thus, to
concatenate two string names STRING1 and STRING2 and then
assign the result to the name STRING3, the following assignment state-
ment suffices:

STRING3 = STRING1 STRING2

Many strings can be concatenated in a string expression, with literals
as well as names used to specify the strings. Thus, the following rules

ARGUMENT = '2X + 3'
EXPRESSION 'SIN(" ARGUMENT ')'

would assign the string SIN(2X +3) to the name EXPRESSION.

2.3 Integer Arithmetic

Arithmetic operations can be performed on integer strings with the
operators +, -, /, * having their usual meaning in integer arithmetic
and ¥ indicating exponentiation. Blanks are used to separate the
strings and operators. The statements

J = 5

I= |l3l,

N=1+ 2

M= (I*'3)+9

assign the values 5 and 14 to the names N and M. A1l arithmetic opera-
tions are binary but more complex expressions can be constructed using
parentheses as indicated in the last example. Arithmetic has precedence
over concatenation, and both types of operations can be performed in

one assignment statement. Hence, the statement

INDEX = 'A." I + "1" ',* 4

assigns the value A.4.5 to the name INDEX.
X

2.4 Pattern Matching

String pattern matching consists of examining a string for a succession
of substrings of specified form. A pattern-matching statement consists
of the string to be examined followed by a pattern. In its simplest form
the pattern may be simply a string. For example, the statement

NAME. 1 ‘IS’

x In HP SNOBOL arithmetic on floating point numbers is implemented, see
3.2.1.7 FLOAT(N).

898 The Bell System Technical Journal, July-August 1966

would examine the value of NAME.1 to determine whether it contains

the literal substring IS. The success or failure of a pattern match can
affect the flow of the program and has other consequences that will be
described later. In the example above, NAME.1, which specifies the
string to be examined, is called the string reference of the statement.
The string reference can also be a literal as in the following pattern-
matching statement.

'+-*/' OPERATOR

There are a variety of types of patterns in SNOBOL3 enabling the
programmer to make complex inquiries about a string. The pattern,
for example, may be expressed as a concatenation of strings as in the
statement

EXPRESSION 'X' OPERATOR 'T'

Patterns of greater generality may be obtained by using string varia-
bles. As the name indicates, a string variable may have a string as value.
There are several types of string variables and the strings which are
acceptable values of a string variable depend on the type of the variable.
The simplest type of string variable is the arbitrary string variable,
so named because it can have any string as its value. An arbitrary
string variable is designated by a name bounded by asterisks.

A typical example of the use of an arbitrary string variable would
be in determining whether the value of NAME.1 contains the string
THE and the string IS but not necessarily consecutively. The arbitrary
string variable would be used to match the substring between THE and
IS. The pattern-matching statement could be

NAME.1 'THE' *SEPARATOR* 'IS"

If the value of NAME.1 were THERAPIST, then the pattern match
would be successful with *SEPARATOR* matching RAP.

A consequence of the successful pattern match is the naming of sub-
strings that match string variables. In the above example, SEPARATOR
would be given the value RAP as if the assignment statement

SEPARATOR = "'RAP"
had been executed.

NOTE: String variables are always enclosed in **

In addition to arbitrary string variables, there are two other types of
string variables: fixed-length and balanced.

A fixed-length string variable can match any string of a specified num-
ber of characters. The notation for a fixed-length variable is similar to

899 The Bell System Technical Journal, July-August 1966

an arbitrary string variable, except the name is followed by a slash
and then by a string specifying the length.

The first three characters of the string named TEXT could be named
PART1 by the rule

TEXT *PART1/'3'*
If N had the value 3, the statement could have been written
TEXT *PART1/N*
As a second example, consider the statement
'$-%*' *PLUS/'1'* *MINUS/'1'* *STAR/'1'*

The pattern successfully matches the string, the PLUS, MINUS, and
STAR are assigned values.

A balanced string variable can only match strings that are parenthesis
balanced in the usual algebraic sense. Strings matched by balanced
string variables do not have to contain parentheses but cannot be null.
Such variables are therefore useful for pattern matching on strings that
are mathematical expressions. The notation for a balanced string varia-
ble consists of a name enclosed within parentheses and surrounded by
a pair of asterisks. For example, if EXPRESSION has the value
SIN(A*(B + C)), then the pattern match in the statement

EXPRESSION 'SIN(" *(ARG)*)"

is successful and ARG is given the value A*(B + C). This use of the
balanced string variable may be compared to the arbitrary string variable
in the following example

EXPRESSION 'SIN(" *ARGI* ')*
where the value A*(B + C would be assigned to ARGI.
2.5 Rearranging Strings

By combining the operations of scanning and assignment in the same
rule, strings may be modified by replacement, deletion, or rearrange-
ment. In particular, if a pattern is followed by an equal sign and then
by a string expression, the substring matching the pattern will be
replaced by the value of the expression if the pattern match succeeds.
As an example of replacement, consider the following sequence of rules.

CARD = 'KING OF HEARTS'
CARD "HEART' = 'DIAMOND'

900 The Bell System Technical Journal, July-Augqust 1966

The second statement causes HEART to be replaced by DIAMOND

producing the string KING OF DIAMONDS. The following example
illustrates how the naming of substrings by string variables may be
used in the expression that specifies the rearrangement. The statements

SUM = 'AT+A2"
SUM *X* 4! *Y*= I+(l x l’l Y I)I

change the value of SUM to +{A1,A2).
2.6 Indirect Referencing

A level of indirectness can be introduced in SNOBOL3 by prefixing
a $ to a name. Thus, if DAY has the value TUESDAY, $DAY is equivalent
to TUESDAY. An example of the usefulness of this facility is the

ability to modify the naming done in a pattern match. Thus, in the
following statements

DAY = 'TUESDAY"
TEXT 'y' *$DAY* ',

the name TUESDAY will be assigned to a substring of TEXT if the
value of TEXT is such that the pattern match succeeds.
A $ can also be prefixed to a string expression that is enclosed in
parentheses. For example, the following statements assign the value
of WORD to one of the names LISTA, LISTB, ... LISTZ according
to the first character in the value.

WORD *CH/'1'*
$('LIST" CH) = WORD

Thus, if WORD has the value DALLAS, the first statement sets the
value of CH equal to D. The parenthesized expression

('LIST' CH)

has the value LISTD. Hence, the effect of the $ is to make the second
statement equivalent to

LISTD = WORD
2.7 Labels and the Flow of Control
A label may be assigned to a statement for reference when controlling
the flow of the program. The label is merely appended to the beginning
of the statement as in
HERE LIST = '(A,B,C,D)’

A statement without a label must begin with a blank.

901 The Bell System Technical Journal, July-August 1966

Statements in a SNOBOL3 program are executed in sequential order.
This order of execution can be modified by means of a go-to appended
to the end of a statement. Go-to's are separated from the rest of the
statement by a slash. There are two typesof go-to: unconditional and
conditional. The unconditional go-to consists of a label enclosed within
parentheses. Thus, after executing

HERE LIST = '(A,B,C,D)' / (THERE)

control is transferred to the statement with label THERE. By means

of the conditional go-to, control can be transferred depending on whether
success or failure has been signaled during the execution of the statement.
The letters S and F are used to indicate the two conditions. For example,
in the following rule the transfer to the statement with label L2 will
occur only if the pattern match is successful.

L1 TEXT ',' *A* ') /S(12)

If the pattern match fails, the next statement in the program is executed.

Transfer on a failure signal can be similarly programmed. As an ex-
ample, consider the following sequence of statements which will delete
from the string named TEXT all occurrences of the characters in LIST:

L1 LIST *CHAR/'1'* = /F(DONE)
L2 TEXT CHAR = /S(L2)F(LT)
DONE

In statement L1, the first character in LIST is named CHAR and is
deleted by replacing it with a null string. Statement L2 is executed
repeatedly until all occurrences of CHAR have been deleted from TEXT.
Then the process iterates using the next character in LIST. Finally,
when there are no characters left in LIST, the pattern match in state-
ment L1 fails. Thus, if TEXT had the value A+B*C/D+E and
LIST the value +*/-, the resulting value of TEXT would be ABCDE.

A transfer may be computed by the use of indirectness in the go-to
as illustrated in the following example: If PDL is assumed to have the
value A1,B5,C3, then the statement

PDL *RET* ',' = /S($RET)
causes deletion of Al, and transfer to the statement labeled Al.
2.8 Functions

There are two types of functions in SNOBOL3: primitive and defined.
Some functions may signal failure. This failure terminates the execution

902 The Bell System Technical Journal, July-Auaust 1966

of the statement in which the function call occurs and may be used to
control the flow of the program.

2.8.1 Primitive Functions

A basic set of primitive functions, programmed at the machine-lan-
guage level, has been included in the SNOBOL3 system.

SIZE is an example of a primitive function. The value of SIZE(X)
is the number of characters in the string named X. Thus, the statements

STR
Z

'FOUL'
SIZE(STR)

assign the value 4 to Z. As a result of the statements

X = SIZE(TEXT) - "1
TEXT *FRONT/X* *LAST*

LAST is defined to be the name of the last character in TEXT.

One use of functions is to conditionally signal failure and hence alter
the flow of control. For example, EQUALS(X,Y) signals failure if X
and Y do not have identical values. If the values of X and Y are identi-
cal, the function returns the null string as value. Thus, the statement

N = EQUALS(A,B) N + '1'

will increment N only if the values of A and B are equal.

Another type of primitive function is one that modifies the behavior
of the SNOBOL3 system itself. The function call MODE('ANCHOR")
is an example. It modifies the pattern matching processor and returns
a null value. Subsequently a pattern match can succeed only if the
matching substring is at the beginning of the string reference. Thus, if
MODE('ANCHOR') has been executed before the statements .

EXP = 'SIN(A + B)'
EXP '(* *(ARG)* ')’

the pattern match fails.
2.8.2 Defined Functions

A section of SNOBOL3 program can be defined to be a function and
certain names occurring in the section can be declared formal parameters.
This function declaration is accomplished by a call of the primitive
function DEFINE. For example,

DEFINE('REVERSE(X)" ,* REV")

903 The Bell System Technical Journal, July-August 1966

declares the section of program beginning at the statement with label
REV to be a function named REVERSE with a formal parameter X.

Suppose REVERSE(X) returns as value the string named X with

the characters reversed. Then the portion of program defining RE-
VERSE could be

REV X *CHAR/ '1'* = /F(RETURN)
REVERSE = CHAR REVERSE / (REV)

The reversed label RETURN causes return to the place at which the
function was called. The name of the function, in this case REVERSE,
serves a special purpose. When the function is called, its value is saved
and then set to the null string. When transfer to RETURN occurs,
its value is the value returned by the function. Thus,

Z = REVERSE(''ABCDE')
assigns the value EDCBA to Z.
2.9 Statement Format

A SNOBOL3 statement has a simple format consisting of several
fields of arbitrary length separated by blanks. The fields are the label,
string reference, pattern, equal sign, replacement expression, and the
go-to. A statement may contain some or all of these fields. The
replacement statement

HERE TEXT ' ' *WORD* ' ' ="' ! /S(GOT)

has all of the fields.
If the Tabel is omitted the statement must begin with a blank. If
the next field is not a go-to, it is considered to be the string reference.

Thus,
/(L7.3)
THERE / (HERE)
are statements that do not have a string reference. The statement
L5 EQUALS(OP, "END') /S(END)

has the string reference EQUALS(OP,'END").

The field following the string reference up to an equal sign or a go-to
is the pattern. In a statement without a go-to or equal sign, the pattern
js the field following the string reference. Thus, in each of the following
statements

904 The Bell System Technical Journal, July-August 1966

STR A *B* ',+ = B /S(GREAT)
STR A *B* ')' =
LT STR A *B* ' /S(GREAT)
STR A *B* '!
the pattern is
A *B* l’l

Note that the elements within the pattern are also separated by blanks.
A statement without a pattern, but containing an equal sign, is an
assignment statement. Some examples are:

ANS
RES

N + '5.

nu

/(READ)

The latter example assigns the null string as the value of RES.
No fields are permitted after the go-to field.

IIT. DETAILED DESCRIPTION

The previous section was an informal description of the basic parts
of SNOBOL3. The following section completes this description in a
more comprehensive and detailed manner.

3.1 Names and String Expressions
3.1.1 Names

Names are used to refer to string values symbolically. In addition,
names are required for certain parts of statements:

(i) string variable names

(i1) string references in assignment statements

(iii) labels in go-to fields.

Names may be explicit or implicit. Explicit names can consist only
of letters, numbers, periods and colons. Examples are:

N

STATEMENT. VARIABLE
X:1

37

Implicit names, constructed by indirect references, may consist of any
nonnull string of characters. Any indirect reference is an implicit name.

905 The Bell System Technical Journal, July-August 1966

For example:

$F

$SIZE(N)

$("M'K)
Consequently,

9999 = 16.
is syntactically incorrect, but

INAME
$INAME

PRk

is proper.

The particular characters comprising a name have no significance;
a name is merely an identifier. A name may be the same as a label or
the name of a function.

3.1.2 String Expressions

The basic string-valued elements are:

(i) literals

(i) names

(1ii) function calls

(iv) arithmetic operations

(v) parenthetical groupings.
Any string of characters (including the null string) not containing a
quotation mark (see Section 3.1.3) may be included between the quo-
tation marks of a literal. Function calls, parenthetical groupings, and
names may be indirectly referenced. Parentheses are required between
successive levels of indirect references.

A string expression is a string-valued element or the concatenation
of several such elements. Some typical string expressions are:

'PARAGRAPH SUB-HEADINGS FOLLOW'
'N'((A + '1') * INTERVAL)
$BASE + SIZE(N)

F(X,F(X,X))

ﬁ(%(?ROOT)

P
$ON 1)

906 The Bell System Technical Journal, July-August 1966

3.1.3 Names and Values

A11 names have null values at the beginning of program execution
except for the string QUOTE. QUOTE has a preassigned value which
is a quotation mark.

Names, including QUOTE, may subsequently be given other values
by assignment statements or as a result of pattern matching. The re-
sulting name-value relationship between strings forms the basic data
structure in SNOBOL3. Structures can be built to arbitrary depths.
For example, the statements

N1 = 'N2'
N3 = 'N2'
N2 = 'N§'
N4 = 'N6'
N5 = 'N4
N6 = 'N3'

might be used to represent relationships between data as indicated in
Fig. 1.

Indirect referencing can be used to refer to the relationships in the
structure. The range of such structures is limited by the fact that a
name can have at most one value at any time, while a string can be the
value of any number of names simultaneously.

3.2 Arithmetic
3.2.1 Integers
Some strings have the property of being SNOBOL3 integers. Such

strings are required in arithmetic operations and as arguments of certain
primitive functions. In order for a string to be a SNOBOL3 integer

(Ne;

Fig. 1 - The name-value relationship among data.

907 The Bell System Technical Journal, July-August 1966

(i) it must consist entirely of digits except for the first
character which may be a sign, and

(1) jts absolute value considered as a decimal integer
must be less than 1032767 -1

In numerical contexts
(i) unsigned numbers are taken to be positive,
(i1) leading zeros are ignored,
(iii) minus zero is equal to plus zero, and
(iv) the null string is taken to be zero.
The following strings are SNOBOL3 integers:

5

+10
0003976
-37
-000003
+0

The following strings are not SNOBOL3 integers:

+A
3.27E-2
3.7

0-
10,000

(*)

If in the integer mode (FLOAT('0') then the primitive function .NUM(X) succeeds,
returning a null value, if the value of X is a SNOBOL3 integer and fails otherwise.

Thus, .NUM('A') fails, while .NUM('100') returns a nulT value. In decimal
mode .NUM succeeds if X is a SNOBOL3 decimal number.

3.2.2 Floating Point Numbers

There is a new primitive function, FLOAT(N) which permits to compute on
decimal numbers. N may be any arithmetic expression but the result of this
expression must be a positive integer.

Examples of correct decimal number: }27
27.
0035
0045.835
-57.95
.00837

A SNOBOL3 decimal number is constituted of any sequence of digits including
or not one decimal point.

After calling the function FLOAT(N), each operation is performed with N
figures after the decimal point. Ex:

SIZE ('10' / '3')
will be = 152 if the last calling to the primitive function FLOAT was:

908 The Bell System Technical Journal, July-August 1966

The integer mode may be restored by executing FLOAT ('9").
In this case:

'10" x '3.1415925" resulted an error.

It is possible to call at any time the function FLOAT. Before the
function is called, the program is executed in the integer mode. FLOAT(N)
terminates execution with an error message if N is not a positive integer
less than 32767.

3.2.3 Arithmetic Expressions

Arithmetic operations must be separated from their operands by blanks.
Consequently A+B is syntactically incorrect. Any expression whose value is
a SNOBOL3 integer is an acceptable operand.

(*)

In extended SNOBOL3 HP FRANCE language, it is not necessary to use
parentheses for grouping terms. The priorities of the operators are the
same as in ALGOL or FORTRAN languages. Ex:

AxB/C-Dis interpreted as (((A x B) / ¢) - D)

Parentheses may be used for grouping terms to create more complicated
expressions but is not necessary in HP SNOBOL:

N+ ('3'*'2")

In expressions containing both concatenation and arithmetic, arithmetic has
precedence over concatenation. Thus, the value of

lNl l5l + l7l
is N12 and the value of
130 % 19! 10 / .|2|.

is 65. Parentheses may be used to group concatenations and arithmetic
to obtain the desired result. Thus, the value of

|3|*(|2|. |'|0| / l2|')
is 75.
The following sequence of statements illustrates possible combinations:

ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
N = SIZE(SLPHA) + ‘1"
M= (N + SIZE(N)) * '2'
K= ('-'NM) + 15"

909 The Bell System Technical Journal, July-August 1966

As a result of executing these statement, N would have the value 27,
M the value 58, and K the value -2753.
(*)
Integers are normalized as follows:
(i) positive integers are unsigned,
(i1) leading zeros are removed, and
(iii) any value equal to zero is returned as an unsigned zero.

Thus,
l+00031: + IOI
has value 3, and
1o 191
has the value 0.
(*)
3.2.4 Error Conditions in Arithmetic Operations
Error conditions in arithmetic operations occur if:
(i) a fractional part would occur in integer mode,
ii) an operand is not a SNOBOL3 integer, or decimal number

(11) division by zero is attempted. (*)

In all cases, an error message is given, and the program is aborted.

3.2.5 Numerical Functions

There are six functions for comparing the magnitude of integers or decimal

numbers:
.EQ X,Y; (X =Y
NE(X,Y (x #Y
LT(X,Y) (x <y
LE(X,Y) éxé Y;
.GT(X,Y; X>Y
GE(X,Y (X 2Y).

These functions succeed, returning a null value, if the condition indi-

cated is satisfied and fail otherwise. The functions also fail if either argument
is not a SNOBOL3 integer or decimal number. A common use of the functions is

to control loops. For example, the following program assigns the squares

of the first 100 positive integers to the names SQ1 through SQ100,

respectively.

910 The Bell System Technical Journal, July-August 1966

N = vl“lv
COMPUTE $('SQ"'N) = N * N
N = .LT(N,'100') N + "1™ /S(COMPUTE)

The function .REMDR(X,Y) has as its value the remainder of X
divided by Y. For example, the value of

.REMDR('5' ,'2")

is 1. The sign of the remainder is the same as the sign of the divisor and
the value is normalized.

If Y is zero the program is aborted.

3.3 Pattern Matching

Pattern matching is a basic operation in SNOBOL3. The examina-
tion, rearrangement, and combination of data depend on pattern
matching; and the success or failure of matching is often used for alter-
ing the flow of control.

3.3.1 Pattern Elements

A pattern consists of a succession of pattern elements separated by
blanks. There are two basic categories of pattern elements: string
constants and string variables.

Any string expression is a constant, except that arithmetic expressions
must be enclosed in parentheses. The following expressions are examples
of string constants:

K
'35R’

SIZE(Z)

.LE(N,M + SIzE(L))
(M+ (N *"2'))

String variables may or may not have associated names. The follow-
ing elements are examples of string variables:

*%

()
/IIBII
VARIABLE1
$SIZE(N)
(EXP)

911 The Bell System Technical Journal, July-August 1966

The length of a fixed-length variable may be any string constant
whose value is a nonnegative SNOBOL3 integer when evaluated. The
fol]owlng fixed-length variables illustrate possible forms the length
may take:

*FL /N
V/(SIZE(N) + '1")
*W/(M+ (N *Z))*

The lengths of the following variables are syntactically incorrect:
(*)
*SPAN/ 'A' * (The value of the length must be an integer.)
3.3.2 The Matching Process

Pattern matching consists of three phases:

(i) evaluation of expressions in the pattern,

(ii) the actual matching, and

(iif) the assignment of values to names associated with string
variables.

3.3.2.1 Evaluation. Before any matching, all expressions in the pattern
are evaluated. Expressions may occur in string constants, the names of
string variables, and in the length of fixed-]ength variables. Evaluation
proceeds from left to right. Any failure in evaluation (such as the failure
of a function call or arithmetic operation) terminates the execution of
the rule without any matching or naming.

The value of all expressions is fixed by evaluation before matching.
No evaluation is performed during matching. The only exception to this
rule is back referencing described in a following section. Thus, in the
pattern

N *SPAN/N*

the length of the fixed-length variable is the value of N before matching
and is not influenced by any subsequent match for the arbitrary string
variable with the name N.

3.3.2.2 Matching. Pattern elements must match consecutive substrings

in the value of the string reference. In most cases the match can easily

be determined from the following rule:
Pattern matching proceeds from left to right, each pattern element
m?tching the shortest possible substring according to the type of the
element.

912 The Bell System Technical Journal, July-August 1966

In some complicated cases, more precise definitions are necessary. The
following definitions provide the details for resolving difficult cases.

(1) The pattern match proceeds element by element from left to
right starting at the leftmost (first) element. The elements must
match consecutive substrings in the value of the string reference.

(ii) An attempt is first made to match the first element starting at
the first character in the value of the string reference. If this is
not possible, an attempt is made starting at the second character,
and so on.

(iii) When an element is successfully matched, a forward match is
attempted for the next element.

(iv) If an element cannot be matched, rematch is attempted for the
preceding element. Rematching is an attempt to extend the sub-
string matching a pattern element and occurs because the pat-
ternhmatch cannot be successfully concluded with the previous
match.

(v) Pattern matching terminates successfully when the rightmost
(last) pattern element has been matched. Pattern matching
terminates in failure if no match can be found for the first
element.

The methods of forward matching and rematching depend on the type
of the pattern element. In each case, the element must match a substring
in the string reference starting at the character following the substring
matching the preceding element. The details follow.

(a) String Constants

In forward matching, a string constant matches a substring identical
to its value. If this is not possible, forward matching fails. A null con-
stant always matches.

No rematch is possible, and rematching always fails.

See the special case of back referencing.

(b) Arbitrary String Variables

In forward matching, ab arbitrary variable matches a null string.

In rematching, one character is added to the substring previously
matched by the variable. If the string reference is not lona enough for
such a match, rematching fails.

As a special case, if the last element in the pattern is an arbitrary
string variable, it matches the remainder of the string.

913 The Bell System Technical Journal, July-August 1966

(¢) Balanced String Variables

In forward matching, the string matthed by a balanced variable
depends on the first character of the substring where the variable is to
match. If this first character is not a parenthesis, then the variable
matches that character. If the first character is a right parenthesis, the
match fails. If the first character is a left parenthesis, the string being
examined is considered character by character until a matching right
parenthesis is found. If there is no matching parenthesis, failure is indi-
cated. Notice that a balanced string variable always matches at least one
character.

In rematching, the previously matched substring is extended by the
next shortest balanced string according to the rules for forward matching.
If this is not possible, rematching fails.

(d) Fixed-Length String Variables

In forward matching, a fixed-length variable matches a substring of
length specified by the variable. If the string being examined is not
long enough, forward matching fails.

Rematching always fails.

(e) Back Referencing

Back referencing is a special case in pattern matching in which tenta-
tively matched substrings can be referred to dynamically during the
matching process. If a constant in the pattern has the same name as a
name associated with a variable to the left of it in the pattern, the value
of the constant is taken to be the substring currently matched by the
variable. Thus, in the pattern

*N*x N
the constant N must match a substring identical to the substring match-
ing *N*, Since matching is done left to right, a tentative match always
exists for a back-referenced variable.
Back referencing only occurs when the name associated with a variable
is to the left of a constant with the same name. Consequently the pattern

N u’l *N*

does not contain back referencing.
If there are several occurrences of the same name in a pattern, a

914 The Bell System Technical Journal, July-August 1966

named constant back references the variable with its name which is
nearest to it on the left. In the pattern

N*E ', NN *N* L,UN

the first and second named constants refer to the first variable and the
third named constant refers to the second variable.

Any type of variable may be back referenced and any number of
named constants may back reference variables in an arbitrarily compli-
cated way.

The determination of back referencing within a pattern is made after
the evaluation of expressions in the pattern but before matching. In
the statements

A = lcl\
B *C* ."' $A

the pattern is back referenced. However, in the statements

VARI = 'SPAN'
X *VARI* $VARI

there is no back referencing.
Back referencing only applies to names which are pattern elements
and not to any other name in the pattern. Specifically in the pattern

N *¥INT/SIZE(N)*

the length of INT is determined by evaluation before matching and
does not change during the matching process.

3.3.2.3 Naming. If the pattern match fails, no naming is done and
the execution of the rule is terminated. If the pattern match succeeds,
naming is performed from left to right for each name associated with a
string variable. The substring matching the variable becomes the new
value of the associated name. If a name is associated with more than one
variable, the value is assigned corresponding to the rightmost variable
with that associated name.

In the case that a name is computed as the result of an expression, the
name is determined by the evaluation made before pattern matching.
Thus, in the statements

A= 'C
z * [\ % '," *$A*

the name associated with the second string variable is C regardless of
the value of Z.

915 The Be11 System Technical Journal, July-August 1966

3.3.3 Pattern Matching Modes

In the normal mode of pattern matching, the first element of the pat-
tern may match starting anywhere in the value of the string reference.
Thus, the simple match

'0123456789"' '6"

succeeds. This mode is referred to as unanchored. The alternative mode,
in which the first pattern element must match a substring beginning

with the first character of the string reference, is called anchored. This
mode may be invoked by executing the function call

MODE ('ANCHOR')

Subsequently, all pattern matching will be in the anchored mode unless
otherwise modified. The normal mode may be restored by

MODE ('UNANCHOR') (%)
3.3.4 Examples of Pattern Matching

The following examples illustrate some of the situations which occur
in pattern matching. String reference values are given as literals for
clarity. Naming is indicated for those pattern matches which succeed.
The normal unanchored matching mode is assumed.

916 The Bell System Technical Journal, July-August 1966

Example 1:
'K)AK(A + B + C)ST' 'K' *(A)* 'ST!
The match succeeds with

A="(A+B+C)

Example 2:

MODE('ANCHOR') 'K)AK(A + B + c)st' 'k
The match fails.

Example 3:
'S)(S + A*B(S' 'St *(A)*
The match fails.

Example 4:

'ABCDEFGHIJKLMNO' *HV/'5'* *A* ("

The match succeeds with

HV = 'ABCDE'
A= 'FGHIJ"
B = 'LMNO'

Notice that since the Tast pattern element is an arbitrary string variable

(A)

B

it matches the remainder of the string reference.

Example 5:
'364:" *Ax RSGUM/3'x et
The match succeeds with

A
SUM

‘364"

Example 6:
'ARMY' *[A* kBk *(Ck
The match succeeds with

A
B
C

IARMY B

ISTI

(%)

917 The Bell System Technical Journal, July-August 1966

Notice that the first two arbitrary string variables match null strings
since this satisfies the requirement for matching the shortest possible
substrings.
Example 7:

'ABC' *(BAL1)* *(BAL2)*
The match succeeds with

BAL1 = 'A'
BAL2 = 'B"

Example 8:
‘AB' *(BAL1)* *(BAL2)* *(BAL3)*

The match fails since each balanced string variable must match at least
one character.

Example 9:
"ABCD' *S/'2'* *T/'3'*
The match fails since the string being matched is not long enough.
Example 10:
'ABCDEFGHFGH' *A/'3'x A
The match succeeds with
A = 'FGH'

This is a simple example of back referencing.

Example 11:
MODE(' ANCHOR')
'ABCOEFGHFGH' *A/'3* A

The match fails.

Example 12:
'32579.97' ¥Ax xBx v B A
The match succeeds with

A="7
B="'9

918 The Bell System Technical Journal, July-August 1966

These values can be verified by carefully applying the matching rules.
(The expected match might be a null value for both A and B.)

Example 13:

The following example illustrates the complexity which may occur
with back referencing.

'BACCABACABABACACAB' *A* *(B)* *(C)*
** C D B D C A ** A E

The match succeeds with

A= "
B = "'BAC'
C = 'CAB'
D="A

E =

Example 14:
"A,A,B,B' EX* Ut X bRk X
The match succeeds with
X = 'B'
3.4 Program Structure and the Flow of Control

A program consists of a succession of statements terminated by an
END statement containing the reserved label END.
(*)

Execution begins with the first statement nf the program.

Statements are subsequently executed one after another unless con-
trol is transferred by means of a go-to.

3.4.1 Labels

Labels are distinguished by beginning in Column 1. A statement with
no label must have a blank in Column 1. The first character of a label
must be a letter or a digit. Subsequent characters may be anything but
blanks. Labels are program constants; the particular characters in a
label have no significance even if they resemble some other structure
such as a name or a function call. Thus F(X) is a legitimate label but
has no further meaning.

919 The Bell System Technical Journal, July-August 1966

3.4.2 The Go-To Field

Go-to's are used to alter the ordinary sequential execution of state-
ments. In general, a statement may be successfully completed, or failure
may be indicated for a number of causes. The success or failure may be
sensed and used by corresponding conditional go-to's to alter the order
in which statements are executed.

A statement with an unconditional go-to may not have conditional
go-to's. Furthermore, a statement may not have more than one uncondi-
tional, success or failure go-to. In statements with both success and
failure go-to's, the go-to's may occur in either order.

The labels given in the go-to's must be names and transfer is made to
the name (not its value). The label in a go-to may be computed by the
use of implicit names resulting from indirect references. For example,
in the statement

X="'3 /($('R'X))
transfer is made to the statement with label R3. Function calls occurring
in go-to's must not fail.

3.4.3 The Order of Execution Within a Statement

The order of execution of operations within a statement may be

important to the programmer for two reasons:

(i) Failure of an operation within a statement terminates execution
of the statement at that point so that subsequent operations are
not performed.

(ii) Calls of defined functions may change the values of names which
appear subsequently in the same statement.

Consequently, a detailed knowledge of when various parts of a state-

ment are evaluated may be required to determine how a program will
function. The overall order of execution within a statement is as follows:
i The string reference (if any) is evaluated.

(ii) The elements of the pattern (if any) are evaluated from left
to right (see Section 3.3.2).

(iii) The pattern match (if any) is performed.

(iv) Any naming as the result of a successful pattern match is
performed.

(v) If a string expression is specified as a replacement, that string
expression is evaluated.

(vi) Reforgation (if specified) of the value of the string reference
is made.

920 The Bell System Technical Journal, July-August 1966

(vii) The go-to (if any) corresponding to the success or failure of
the statement is evaluated. ,
(viii) Transfer is made to the next statement accordingly.

If failure is signaled in any of the steps (i) through (vi) above, execu-
tion of the statement terminates at that point and the appropriate go-to
is evaluated. In particular note that only the appropriate go-to is evalu-
ated. The order of evaluation within a string expression is as follows:
(i) Elements in a concatenation are evaluated left to right.
(ii) In a function or parenthetical grouping, the innermost expression
in the nesting is evaluated first.
(iii) Arithmetic is performed before concatenation.
(iv) A1l arguments of a function are evaluated, left to right, before
the function is called.

3.4.4 Termination of Execution

Program execution is usually terminated by a transfer to the label
END or by flowing into the END statement. (%)
%*
3.5 Input-Output and File Manipulation

3.5.1 Implementation Differences

Input-output is particularly subject to differences in machines and
monitor systems. Consequently the input-output behavior of the
SNOBOL3 system may vary considerably in different implementations.
Reference to files, record sizes and the handling of end-of-file differ
most. The following sections should be read with this in mind.

921 The Bell System Technical Journal, July-August 1966

3.5.2 String-Oriented Input and OQutput

Input and output is accomplished through string names associated
with logical files.

' For example, SYSPOT ("system peripheral output tape") is associ-

ated with the standard output file. Every time SYSPOT is given a

value, a copy of the value is printed on the system output file. Thus,

the statement -

SYSPOT = 'TABLE OF VALUES"

will cause the printing of TABLE OF VALUES on the output listing.

SYSPPT ("system peripheral punch tape") is associated with the
standard punch file. Values given SYSPPT are punched rather than
printed.

Similarly, SYSPIT ("system peripheral input tape") is associated
with the standard input file. Every time the value of SYSPIT is re-
quired, a card image is read from the input file to become the value of
SYSPIT. For example, the statement

SYSPIT *FIELD1* ',' *FIELD2* '

might be used to read and name data items on input cards with the
format indicated by the pattern.

SYSPLT System peripheral 1ist output (Logical Unit : 6)
SYSPRT System peripheral reader tape (Logical Unit : 5)

which have the same meaning that SYSPIT, SYSPOT and SYSPPT which are
same as:

SYSPOT System peripheral output tape (Logical Unit : 1)
SYSPPT System peripheral punch-tape (Logical Unit : 4)
SYSPIT System peripheral input tape (Logical Unit : 1)

(*)

922 The Bell System Technical Journal, July-August 1966

3.5.4 Output
SYSPOT = A or SYSPLT = A or SYSPPT = A

The number of characters of the string A must be less than 4096.
A11 outputs use a buffering technic very sophisticated.
A11 output requests are stacked in a circular buffer and executed
simultaneously with the execution of the program. During a garbage
collection (very fast) buffering outputs are suspended.

The following functions are available only if SNOBOL3 is assembled
with the N or Z option in the control statement. They significantly
limit the size of a user's application program in a 16K D0S-M system.

EXIO (LU, CODE, D)
The function EXIO can have two or three parameters. The third parameter
D does not have to be the true name of the string variable name when it
is present.
1st parameter: The logical unit

2nd parameter: The code function
3rd parameter: The name of the string variable

Code Function

For the following codes only two parameters are necessary in the call to
EXIO.

CODE = 11: MWrite end-of-file gMagnetic tapeg
CODE = 12: Backspace on record Magnetic tape
CODE = 13: Forward space on record (Magnetic tapeg
CODE = 14: Rewind (Magnetic tape
CODE = 15: Rewind Standby (Magnetic tape)
CODE = 17: Set end-of-paper tape

CODE = 18: Generate paper tape leader

The following 3 codes require the parameter D.

CODE = 1: Read:

D has the value of the input logical unit LU.
CODE = 2: MWrite:

D has the value of the output logical unit LU.
CODE = 3:

Open file:
VaTue of D = name of the source S file; fails if file
name not recognized.

If you try to read without opening a file, EXIO fails and D = null string.
At the end of a file read, EXIO fails and D = the null string and
reinitializes the open file.

923

The Bell System Technical Journal, July-August 1966

MEMOIRE (Zq, Z,.....En}

Restores disc-resident strings
to core memory

DISQUE (Z], ZZ"'2512)

Zi = names of strings

After execution of function DISQUE
all strings named in the parameter
1ist are made disc resident.

DISQUE may be called at any time
during execution and multiple calls
are possible.

If Z; is already disc-resident, no
actian taken, no error message.

Z. may be defined or undefined when
DISQUE is called. If Z, is undefined,
it will be put on the d‘sc when it is
defined. If Z. is redefined the disc
will be modifidd automatically.

924 The Bell System Technical Journal, July-August 1966

3.5.5 Input

- SYSPIT or SYSPRT fails if an EOF or an end of tape
are encountered.

- To read a tape, it's possible to execute the
following program:

DEBUT

LEC
LEC

SYSPOT = 'LOAD YOUR TAPE AND TYPE : PRET'
= SYSPIT

EQUALS (A, "'PRET') /F(DEBUT)

EQUALS (TEXT) /F $SUIT)

TEXT = TEXT SYSPRT /S(LEC1)F(LEC)

925 The Bell System Technical Journal, July-August 1966

3.6 Primitive Functions
3.6.1 Function Calls

Function calls may occur anywhere in a statement where a string
value is appropriate. An argument of a function may be any string
expression, however complicated. Any argument may be explicitly null
and trailing arguments that are omitted are given null values. Thus,
the two function calls

(*)
EQUALS(X,)
EQUALS(X)

are equivalent.
(*)

A11 function.calls return strings as value if they succeed. In the case
of functions that have no natural value, a null string is returned.
It is important to notice that the function name and the left paren-
thesis may not be separated by blanks. Thus,
SIZE(N)
is a function call, while
SIZE (N)
is the concatenation of a name and a parenthetical grouping. Similarly, (*)

functions which have no argument must be written with the parentheses.
Otherwise they will be taken for string names rather than function calls.

The primitive function .NUM may be called with up to 511 arguments. (*)

926 The Bell System Technical Journal, July-August 1966

3.6.3 Miscellaneous Primitive Functions

There are six primitive functions in addition to the functions described
elsewhere in Section III. They are:

(i) EQUALS(X,Y) EQUALS returns a null value if the value of X
is identical to the value of Y and fails otherwise. The values must
be identical and not just numerically equal (compare Section 3.2.5).
(i1) UNEQL(X,Y) UNEQL returns a null value if the value of X
~is not identical to the value of Y and fails otherwise.
(vi) SIZE(S) SIZE returns as value the number of characters in the
value of S. For example, the value of SIZE ("0123456789") is 10. %)

(*)

3.7 Defined Functions
3.7.1 The Definition of a Function
A defined function is characterized by four items:

(i) a name, by which it is called and which is used for returning
value,
(i1) a list of formal arguments, used for passing values to the function,
(iii) a label, indicating its entry point, and
(iv) a list of local names used by the function.

A function must be defined during program execution before it is used.
This definition is accomplished by a call of the DEFINE function which

927 The Bell System Technical Journal, July-August 1966

establishes the four items above. The form of the call is
DEFINE(FORM,LABEL ,NAMES)

FORM is a prototype of the function call, giving the function name
and the 1ist of formal arguments. The value of LABEL is the entry
point, and the value of NAMES is the 1ist of local names separated by
commas. For example,

DEFINE('FACT(N)", 'F')

defines a function FACT with one formal argument N. Execution of
FACT is to begin at the label F. No local names are declared. Similarly,

DEFINE('MATRIXADD(A,B)', 'MA*,"'I,J,K")

defines a function MATRIXADD with the two formal arguments A
and B, the entry point MA and local names I,J, and K.

The total number of formal arguments and local names must not
exceed ten. This Timit is an assembly parameter.

3.7.2 The Execution of Defined Functions

The call of a defined function is identical to the call of a primitive
function (see Section 3.6.1). Hence, trailing arguments which are
omitted are given null values. A defined function, however, may not be
called with more arguments than given in its definition.

When a defined function is called, values of the following names are
saved:

(1) the name of the function.

(i1) all formal arguments.

(iii) all local names.

New values are assigned to these names as follows:

(i) the name of the function is given a null value.

(ii) the formal arguments are assigned values by evaluating the

corresponding arguments in the function call.

(iii) all local names are assigned null values.

Saving of old values and assignment of new values is made from left
to right as the names appear in the DEFINE call.

After these new values have been assigned, control is transferred to
the entry point of the function and program execution continues in a
normal fashion until transfer is made to one of the two reserved labels
RETURN or FRETURN.

RETURN terminates execution of the function. By convention, the

928 The Bell System Technical Journal, July-August 1966

value of the function call is the value of the function name when the
return was made. For example, if FACT as defined above is designed to
compute the factorial of a number, the corresponding program might be

F FACT = .EQ(N,'0") "1' /S(RETURN)
FACT = FACT(N - '1") *N /(RETURN)

Then the statements

SYSPOT
SYSPOT

FACT ('3")
FACT('2') + FACT('4")

would print 6 and 26 respectively.

FRETURN terminates execution of the function and signals failure.
Execution of the statement in which the call occurs terminates at that
point in the same manner as in the failure of a primitive function.

When return is made from a function (by either RETURN or
FRETURN) the saved values of all names are restored in the opposite
order from which they were saved.

A function may have a formal argument which is the same as its
name. This is useful when the value of a function is to be a simple
modification of one of its arguments. A function whose value is its first

argument with all occurrences of its second argument deleted might be
defined as

DEFINE('DELETE(DELETE,CHAR)' , 'DEL')
with the program
DEL DELETE CHAR = /S(DEL)F(RETURN)

Here DELETE can be operated on as desired and the value has the
correct name (that is, the name of the function) when the deletion is
completed.

3.7.3 Local Names

Local names may be declared when names used in a function have
values which should not be destroyed by a function call. Consider the
following function which intersperses commas between the characters
in its argument

COMMA ARG *CHAR/'1'* = /F(RETURN)
COMMA = COMMA CHAR "," /(COMMA)

The definition would be

DEFINE(‘COMMA(ARG)' , 'COMMA' ,'CHAR")

929 The Bell System Technical Journal, July-August 1966

so that the use of CHAR during the function call would not change
the value of CHAR outside the function.

Local names are particularly important when recursively called
functions use names for intermediate computation.

IV. OPERATING ENVIRONMENT

The SNOBOL3 system consists of a compiler and an interpreter. The
compiler translates SNOBOL3 source programs into an internal language

suitable for the interpreter. See HP documentation form for User procedures.

4.1 Compilation
4.1.1 Source Program Listing

During compilation, the source program is read and compiled line
by 1ine. Only columns 1 through 72 are read by the compiler. Consecu-
tive statement numbers are added to the listing for reference.

4.,1.2 Comments

A l1ine with an asterisk in column 1 is treated as a comment. Com-
ments are printed but otherwise ignored by the compiler. Comments
may be used freely throughout the program and may be placed any-
where before the END card.

4.1.3 Continuation line (cards)

A statement may be broken over line boundaries by use of the contin-
uation 1ine convention. A period in column 1 is interpreted by the
compiler as an indication that the 7ineis a continuation of the preceding
statement. Statements may be broken over 1ine boundaries anywhere.

For example,

SYSPOT = 'THE MAXIMUM LENGTH OF'
. 'THE COMPUTATIONAL THREAD HAS BEEN'
"COMPUTED TO BE'

There is no Timit to the number of continue 1ines which may be used

for a statement,.but in the same instruction the number of characters must
not be over 1300.

Remainder omitted.

(*)

(*)

(*)

SNOBOL EXAMPLES

all by PAUL GARAVINI:
HEWLETT-PACKARD FRANCE
QUARTIER DE COURTABOEUF
BOITE POSTALE 6

F - 91, ORSAY

FRANCE

tel (1) 920 88 01
telex, 60048

BN WN-

SNOBOL oL
-

[TXZ XYY XTI RLATILTINYLY SIS YA AATITYYNYY YA YA YR YY AR XYY 2 1 2 2

* THIS PROGRAM READS IN TEXT AND PRINTS N CHARACTERS L
® PER COLUMN, N AND THE NUMBER OF COLUMNS MAY BE ENTERED .
* AT EXECUTION TIME, b

BOBBCCVBNRBRVBBBBIBRERDLBB VDRV RBBOBRBVOBBVOBDOBRO0BRERRRBNN0e
[J
L J

MODE (* ANCHOR *)

DEFINE (9 INSERT (KyLINE) 9 9 IM® ¢ *BLANK+WORD?)

SYSPOT = *TYPE THE VALUE OF N § _°¢

N = SYSPIT ,

SYSPOT = *TYPE THE NUMBER OF COLUMNS t _°

CLMN = SYSPIT

«GTUI(N + 939) & CLNN)»*1329) /S(ERR])
[]

® READ IN THE TEXT
*
LEC] SYSPOT = *TEXTE FILE NAME ? .°
EXIO(929993%,SYSPIT) /FLLECY)
SYSPLY = 1]
SYSPLT = ,
SYSPLT = ¢ ORIGINAL TEXT t °
SYSPLY =
SYSPLT =
NDX = ¢]¢
TEXT =
TEXT] =
FLAG = Q¢]
LEC EXIO(02¢,0]19,TXT) /F(LEC)
LEC2 SYSPLT = ¢ ¢ TXY
POINTS TXT SPREF® 9,0 aTXTe /F (SUITE)
PHRSE = PHRSE ¢ ¢ PREF 9, / (POINTS)
SUITE TXT = PHRSE ¢ ¢ TXT
PHRSE =
VIRG TXT ®PREF® 04,0 &TXT® /F(SUITEL)
PHRSE = PHRSE * v PREF %y /{VIRG)
SUITE] PHRSE = PHRSE ¢ ¢ TXT
SLASH PHRSE ®*PHRSE® ¢/¢ SRELICA® /S(TXTCMPLT)
TEXT1 = TEXT1 ¢ ¢ PHRSE
PHRSE =
EXJO(*2%9°]199TXT) /SI(LEC2)F(TSTFIN)
°

. DEBUT DE LA DEUXIEME PASS

*

TSTFIN FLAG = *19 7 (DCPE)

MPRS SYSPLY = o]0
SYSPLT
SYSPLY
SYSPLT
SYSPLT
NDX = NDX = ¢]¢
SYSPLT = /(DIVLOOP)

* EDITED TEXT: ¢ N * CHARACTERS PER COLUMN?®
* ¢ CLMN * COLUMNS., ¢

TXTCMPLY TEXT) = TEXT] * ¢ PHRSE

DCPE «EQISIZE(TEXT1)400°?) /S(TEST)
TEXT1 ®0P/¢]100°% oTEXT1® /S (BLNCS)
0P = TEXT]
TEXT] =

61 BLNCS OP #p@ ¢ ¢ ogs = A ¢ ¢ B /S(BLNCS)

62 TEXT = TEXT OP /7 (DCPE)

63 TEST oGT(SIZE(TEXT) oN) /F (LASTLINE)

64 = 100

65 SCAN TEXT ®LINE/(N - K)® ¢ ¢ = /F (BUMPK)

66 LIGNE = ¢ ¢ INSERT(KsLINE)

67 LIGNE ®*LIGNE® ¢/ ®RESTES® /F (TSTLGN)

68 TEXT = ¢ * RESTE ¢ ¢ TEXT

69 TSTLGN ¢EQISIZE(LIGNE) o (N ¢ *1?)) /S (COMPLETE)
70 LIGNE = LIGNE * ¢ /7 (TSTLGN)
71 COMPLETE S{°I' NDX) = LIGNE

72 NDX = NDX « t}]¢ /Z(TEST)

T3 BUMPK K = JLT(KeN) K & 10 /S (SCAN) F{ERR)

T4 *

7% e FUNCTION TO INTERSPERSE K BLANKS IN A LINE

76 =

77 IM INSERT = EQ(Ke?0°*) LINE /S{RETURN)

78 LINE #% o /S (BLINK)

79 INSERT = LINE / (RETURN)

80 BLINK BLANK = BLANK ¢

81 LOOP LINE #WORD® BLANK = /F (MORE)

ez INSERT = INSERT WORD BLANK ¢ ¢

83 = oGT(Ke?1?) K = 9]¢ /S(LOOP)

84 INSERT = INSERT LINE /7 (RETURN)

85 MORE LINE = INSERT LINE

86 INSERT = 7 {BLINK)

87 LASTLINE JEQISIZE(TEXT)N) /S(CMPLT)
88 TEXT = TEXT ¢ ¢ / (LASTLINE)
89 CMPLY $S('I* NDX) = ¢ ¢ TEXTY

90 NDX = NOX ¢ ¢]¢

91 TEXT1 =

92 TEXT = ¢ ¢

93 PHRSE = RELICA

94 +EQ(FLAGy*1?) /F (SLASH) S (MPRS)
95 &

96 ¢ BOUCLE D*IMPRESSION

97 =«

98 DIvVLOOP NOX = oNE(REMDR(NDXoCLMN)) NDX ¢ 0]°¢ /F {COLONNES)
99 $(*]¢ NDX) = /{(DIVLOOP)

100 COLONNES NBLINE = NDX / CLMN

101 NDX = ¢]°¢
102 =
103 &
104 PRNTLOOP IK = Q¢
105 CHN =

106 LINLOOP CHN = CHN ¢ ¢ S(e]J0 (NDX ¢ IK ® NBLINE))

107 IK = NE(IKeCLMN) IK & o]0 /S(LINLOOP)
108 SYSPLT = CHN

109 NDX = NE(NDXoNBLINE) NOX ¢ ¢} /S(PRNTLOOP)
110 SYSPLY = ¢]¢ / (END)
111 ERR1 SYSPOT = ¢ SORRY.THE LINE IS TOO BIGeso® /(END)
112 ERR SYSPOT = ¢ SORRY.N IS TOO SMALL ¢
113 END

FIN DE COMPILATION . NOMBRE D*ERREURSS 0

NOMBRE DE MOTS OCCUPES PAR LE PROGRAMME: 1458

ORIGINAL TEXT :

LA SOCIETE HEWLETT=-PACKARD QUI REGROUPE QUINZE MILLE PERSONNES
DANS LE MONDEs CONSTRUIT DEPUIS PLUSIEURS ANNEES DES ORDINATEURS
DE PETITE ET MOYENNE PUISSANCE. TROIS MILLE DE CES MACHINES ONT
ETE VENDUES DONT PLUS D'UNE CENTAINE EN FRANCE.
LES APPLICATIONS DE CES ORDINATEURS SONT TRES VARIEES: CALCUL
SCIENTIFIQUEsGESTION,CONTROLE DE PROCESSUS INDUSTRIELS ETCeee//
NOS ORDINATEURS DISPOSENT D'UN SOFTWARE TRES COMPLET.LES LANGAGES
DE PROGRAMMATION HABITUELSs ASSEMBLEURs FORTRANes ALGOLe RASIC SONT
DISPONIBLES. DES MONITEURSs BANDE PAPIERe SANDE MAGNETIQUEs DISQUE
ET TEMPS REEL PERMETTENT LA COMPILATION ET LY'EXECUTION DES PROGRAMMES,
CEPENDANTy CES LANGAGES SONT MAL ADAPTES AUX PROBLEMES DE RECINNAISSANCE
DE CARACTERESs DE JUSTIFICATION DE TEXTEs DE RECHERCHE DE STRUCTURE,.
AUSSI+UN NOUVEAU LANGAGE»SNOBOL3 A=-T-IL ETE INTRODUIT POUR PERMETTRE
DE RESOUDRE AISEMENT CES PROBLEMES.//

SNOBOL3 EST CONCU POUR LA MANIPULATION DE CHAINES DE CARACTERES. IL
PERMET DE DEFINIR DE TELLES CHAINESy DE LES ASSOCIER ET AUSSI D'EFFECTUER
UNE RECHERCHE POUR SAVOIR SI UNE CHAINE DE CARACTERES EST CONTENUE
DANS UNE AUTRE. LES CHAINES PEUVENT BIEN ENTENDUES ETRE LES LIGNES
D'UN TEXTE. ON CONCOIT QU*IL SOIT ALORS FACILE DE CONSTRUIRE DANS
CE LANGAGE UN PROGRAMME FAISANT LA JUSTIFICATION D'UN TEXTE ET SA
MISE EN PAGE. LE PROGRAMME QUI A PERMIS LA JUSTIFICATION SUR 3
COLONNES DE CE TEXTE NE DEMANDE
PAS PLUS D'UNE CENTAINE D'INSTRUCTIONSI!3/
CE PROGRAMME NECESSITE SEULEMENT UN ORDINATEUR HEWLETT=~PACKARD
DE 16,000 MOTS DE 16 BITSsUNE TELETYPE+UN LECTEUR ET UN PERFORATEUR
RAPIDES DE RUBAN. UNE UTILISATION PLUS SOUPLE PEUT ETRE OBRTENUE
EN ADJOIGNANT UN DISQUE MAGNETIQUE.//777/

POUR LES SPECIALISTES:// _
LE NOUVEL ORDINATEUR HP 2100 QUI SERA PRESENTE POUR LA PREMIERE
FOIS EN EUROPE AU SICOB EST ENTIEREMENT COMPATIBLE AVEC LA GAMME
PRECEDENTE HP 211492116.PLUS RAPIDE QUE SES PREDECESSEURSs.L
EST D'UN COUT INFERJEUR GRACE A LUTILISATION D'UNE MEMOIRC MORTE
MICROPROGRAMMEE.UNE OPTION VIRGULF FLOTTANTE CABLEE POUR LE CALCUL
SCIENTIFIQUE EST DISPONIBLE. CET ORDINATEUR NE NECESSITE
PAS D*INSTALLATION SPECIALE. COMPACTs IL PEUT MEME
ETRE POSE SUR UNE TABLE 1! ' .
UNE TRES LARGE GAMME DE PERIPHERIQUES PEUT LUI ETRE
CONNECTES DISQUES ET RANDES MAGNETIQUES, IMPRIMANTES,
TERMINAUX DE VISUALISATIONIETC.oBENEFICIANT
INTEGRALEMENT DE LA PROGRAMMATION DEVELOPPEE POUR LA
SERIE PRECEDENTE+CE NOUVEL ORDINATEUR EST DONC
DES A PRESENT OPERATIONNEL., LE LANGAGE SNOBOL LU]I
APPORTE DES FACILITES SUPPLEMENTAIRES POUR LE CALCUL
SCIENTIFIQUE EVT L'EDITION DE TEXTES.

EDITED TEXT:

45 CHARACTERS PER COLUMN
2 COLUMNS,

LA SOCIETE HEWLETT-PACKARD QUI
QUINZE MILLE PERSONNES DANS LE MONDE+
CONSTRUIT DEPUIS PLUSIEURS ANNEES DES
ORDINATEURS OE PETITE ET MOYENNE PUISSANCE.
TROIS MILLE ODE CES MACHINES ONT ETE VENDUES
DONT PLUS D'UNE CENTAINE EN FRANCE. LES
APPLICATIONS DE CES ORDINATEURS SONT TRES
VARIEES: CALCUL SCIENTIFIQUE, GESTION,
CONTROLE DE PROCESSUS INDUSTRIELS ETCe o« o

REGROUPE

NOS ORDINATEURS DISPOSENT D'UN SOFTWARE
TRES COMPLET. LES LANGAGES DE PROGRAMMATION
HARITUELSe ASSEMBLEURe FORTRANs ALGOLs BRASIC
SONT DISPONIBLES. NES MONITEURSs BANDE
PAPIERs BANDE MAGNETIQUEs DISQUE ET TEMPS
REEL PERMETTENT LA COMPILATION ET L'EXECUTION
DES PROGRAMMES. CEPENDANT, CES LANGAGES SONT
MAL ADAPTES AUX PROBLEMES DE RECONNAISSANCE
DE CARACTERESs DE JUSTIFICATION DE TEXTEe DE
RECHERCHE DE STRUCTURE, AlJSSIs UN NOUVEAU
LANGAGEes SNOBOL3 A-T-IL ETE INTRODUIT POUR
PERMETTRE DE RESOUDRE AISEMENT CFS PROBLEMES.

SNOBOL3 EST CONCU POUR LA MANIPULATION DE
CHAINES DE CARACTERES. IL PERMET DE DEFINIR
DE TELLES CHAINES. DE LES ASSOCIER ET AUSSI
D'EFFECTUER UNE RECHERCHE POUR SAVOIR SI UNE
CHAINE ODE CARACTERES EST CONTENUE DANS UNE
AUTRE. LES CHAINES PEUVENT BIEN ENTENDUES
ETRE LES LIGNES D*UN TEXTE. ON CONCOIT QUCIL
SOIT ALORS FACILE OE CONSTRUIRE DANS CE
LANGAGE UN PROGRAMME FAISANT LA JUSTIFICATION
D'UN TEXTE ET SA MISE EN PAGE, LE PROGRAMME
QUI A PERMIS LA JUSTIFICATION SUR 3 COLONNES

DE CE TEXTE NE DEMANDE PAS PLUS DIUNE
CENTAINE DYINSTRUCTIONS!!!

CE PROGRAMME NECESSITE SEULEMENT UN
ORDINATEUR HEWLETT-PACKARD DE 16. 000 MOTS DE
16 BITSe UNE TELETYPEs UN LECTEUR ET UN
PERFORATEUR RAPIDES DE RUBAN. UNE UTILISATION
PLUS SOUPLE PEUT ETRE OBTENUE EN ADJOIGNANT
UN DISQUE MAGNETIQUE.

POUR LES SPECIALISTES?

LE NOUVEL ORDINATEUR HP 2100 QUI SERA
PRESENTE POUR (A PREMIERE FOIS EN EUROPE AU
SICOR EST ENTIEREMENT COMPATIBLE AVEC LA
GAMME PRECEDENTE HP 2114y 2116. PLUS RAPIDE
QUE SES PREDECESSEURS, IL EST - D'UN COUT
INFERIFUR GRACE A L'UTILISATION D'UNE MEMOIRE
MORTE MICROPROGRAMMEE. UNE OPTION VIRGULE
FLOTTANTE CABLEE POUR LE CALCUL SCIENTIFIGQUE
EST DISPONIBLE. CET ORDINATEUR NE NECESSITE
PAS DYINSTALLATION SPECIALE. COMPACTes IL PEUT
MEME ETRE POSE SUR UNE TABLE ! UNE TRES LARGE
GAMME DE PERIPHERIQUES PEUT LUI ETRE
CONNECTE DISQUES ET BANDES MAGNETIQUES,
IMPRIMANTESs TERMINAUX DE VISUALISATIONe ETC.
. . BENEFICIANT INTEGRALEMENT DE LA
PROGRAMMAT .ON CEVELOPPEE POUR LA SERIE
PRECEDENTEs CE NOUVEL ORDINATEUR EST DONC DES
A PRESENT OPERATIONNEL., LE LANGAGE SNOBOL LUI
APPORTE DES FACILITES SUPPLEMENTAIRES POUR LE
CALCUL SCIENTIFIQUE EV L'EDITION DE TEXTES.

EDITED TEXTS 95 CHARACTERS PER COLUMN
1 COLUMNS,

LA SOCIETE HEWLETT-PACKARD QUI REGROUPE QUINZE MILLE PERSONNES DANS LE MONDEes CONSTRUIT DEPUIS
PLUSIEURS ANNEES DES ORDINATEURS DE PETITE ET MOYENNE PUISSANCE. TROIS MILLE DE CES MACHINES
ONT ETE VENDUES DONT PLUS D'UNE CENTAINE EN FRANCE. LES APPLICATIONS DE CES ORDINATEURS SONT
TRES VARIEES: CALCUL SCIENTIFIQUEs GESTIONes CONTROLE DE PROCESSUS INDUSTRIELS ETCe o o

NOS ORDINATEURS DISPOSENT D'UN SOFTWARE TRES COMPLET. LES LANGAGES DE PROGRAMMATION
HABITUELSy ASSEMBLEURes FORTRANs ALGOLs BASIC SONT DISPONIBLES. DES MONITEURS, BANDE PAPIERs
BANDE MAGNETIQUEes DISQUE ET TEMPS REEL PERMETTENT LA COMPILATION EY L'EXECUTION DES PROGRAMMES.
CEPENDANTy CES LANGAGES SONT MAL ADAPTES AUX PRORLEMES DE RECONNAISSANCE DE CARACTERES» DE
JUSTIFICATION DE TEXTEs DE RECHERCHE DE STRUCTURE. AUSSIs UN NOUVEAU LANGAGEy SNOBOL3 A=T-IL
ETE INTRODUIT POUR PERMETTRE DE RESOUDRE AISEMENT CES r:"QLFMES.

SNOBOL3 EST CONCU POUR LA MANIPULATION DE CHAINES DE CARACTERES. IL PERMET DE DEFINIR OE
TELLES CHAINES, DE LES ASSOCIER ET AUSSI D'EFFECTUER UNE RECHERCHE POUR SAVOIR S1 UNE CHAINE DE
CARACTERES EST CONTENUE DANS UNE AUTRE. LES CHAINES PEUVENT BIEN ENTENDUES ETRE LES LIGNES O*UN
TEXTE. ON CONCOIT QU'IL SOIT ALORS FACILE OE CONSTRUIRE DANS CE LANGAGE UN PROGRAMME FAISANT LA
JUSTIFICATION D'UN TEXTE ET SA MISE EN PAGE. LE PROGRAMME QUI A PERMIS LA JUSTIFICATION SUR 3
COLONNES DE CE TEXTE NE DEMANDE PAS PLUS D'UNE CENTAINE D®*INSTRUCTIONS{I!Y .

CE PROGRAMME NECESSITE SEULEMENT UN ORDINATEUR HEWLETT-PACKARD DE 16. 000 MOTS DE 16 BITS,
UNE TELETYPEs UN LECTEUR ET UN PERFORATEUR RAPIDES DE RURAN. UNE UTILISATION PLUS SOUPLE PEUT
ETRE OBTENUE EN ADJOIGNANT UN DISQUE MAGNETIQUE,

POUR LES SPECIALISTES:

LE NOUVEL ORDINATEUR HP 2100 QUI SERA PRESENTE POUR LA PREMIERE FOIS EN EUROPE AU SICOB EST
ENTIEREMENT COMPATIBLE AVEC LA GAMME PRECEDENTE HP 2114s 2116, PLUS RAPIDE QUE SES
PREDECESSEURS IL EST D'UN COUT INFERIEUR GRACE A LPUTILISATION D'UNE MEMOIRE MORTE
MICROPROGRAMMEE , UNE OPTION VIRGULE FLOTTANTE CABLEE POUR (LE CALCUL SCIENTIFIQUE: EST
DISPONIBLE. CET ORDINATEUR NE NFCESSITE PAS D'INSTALLATION SPECIALE. COMPACTs IL PEUT MEME ETRE
POSE SUR UNE TASLE ! UNE TRES LARGE GAMME OE PERIPHERIQUES PEUT LUI ETRE CONNECTE: DISQUES ET
BANDES MAGNETIQUESes IMPRIMANTES, TERMINAUX OE VISUALISATIONe ETC. o o BENEFICIANT INTEGRALEMENT
DE LA PROGRAMMATION OEVELOPPEE POUR LA SERIE PRECEDENTEs CE NOUVEL ORDINATEUR EST DONC DES A
PRESENT OPERATIONNEL. LE LANGAGE SNOBOL LUI APPORTE DES FACILITES SUPPLEMENTAIRES POUR LE
CALCUL SCIENTIFIQUE ET L'EDITION DE TEXTES. '

EDITED TEXT:

3 COLUMNS,

LA SOCIETE HEWLETT-PACKARD QUI
REGROUPE QUINZE MILLE PERSONNES
DANS LE MONDE,s CONSTRUIT DEPUIS
PLUSIEURS ANNEES DES ORDINATEURS
DE PETITE ET MOYENNE PUISSANCE,
TROIS MILLE DE CES MACHINES ONT
ETE VENDUES DONT PLUS DYUNE
CENTAINE EN FRANCE. LES
APPLICATIONS DE CES ORDINATEURS
SONT TRES VARIEES: CaALCUL
SCIENTIFIQUEs GESTIONs CONTROLE
DE PROCESSUS INDUSTRIELS ETC. .

NOS ORDINATEURS DISPOSENT
D*UN SOFTWARE TRES COMPLET. LES
LANGAGES DE PROGRAMMATION
HABITUELSs ASSEMBLEURs FORTRAN,
ALGOLs BASIC SONT DISPONIBLES,
DES MONITEURSes BANDE PAPIER,
BANDE MAGNETIQUE, DISQUE ET
TEMPS REEL PERMETTENT LA
COMPILATION ET L C*EXECUTION DES
PROGRAMMES., CEPENDANT, CES
LANGAGES SONT MAL ADAPTES AUX
PROBLEMES DE RECONNAISSANCE OE
CARACTERESs DE JUSTIFICATION DE
TEXTE DE RECHERCHE DE
STRUCTURE. AUSSIe UN NOUVEAV
LANGAGE » SNOBOL3 A-T-IL ETE
INTRODVUIT POUR PERMETTRE DE
RESOUDRE AISEMENT CES PROBLEMES,

32 CHARACTERS PER COLUMN

SNOBOL3 EST CONCU POUR LA
MANIPULATION DE CHAINES DE
CARACTERES. IL PERMET DE DEFINIR
DE TELLES CHAINES, DE LES
ASSOCIER ET AUSSI D'EFFECTUER
UNE RECHERCHE POUR SAVOIR SI UNE
CHAINE DE CARACTERES EST
CONTENUE DANS UNE AUTRE. LES
CHAINES PEUVENT BIEN ENTENDUES
ETRE LES LIGNES D'u,, TC/TE. ON
CONCOIT QU*IL SOIT ALORS FACILE
DE CONSTRUIRE DANS CE LANGAGE UN
PROGRAMME FAISANT LA
JUSTIFICATION D'UN TEXTE ET SA
MISE EN PAGE. LE PROGRAMME QUI A
PERMIS LA JUSTIFICATION SUR 3
COLONNES DE CE TEXTE NE DEMANDE

PAS PLUS DYUNE CENTAINE
D*INSTRUCTIONSt 1!

CE PROGRAMME MECESSITE
SEULEMENT UN ORDINATEUR

HEWLETT-PACKARD DE 16. 000 MOTS
DE 16 B8ITSy UNE TELETYPEs UN

LECTEUR ET UN PERFORATEUR
RAPIDES OE RUBAN, UNE
UTILISATION PLUS SOUPLE PEUT

ETRE OBTENUE EN ADJOIGNANT UN
DISQUE MAGNETIQUE.

POUR LES SPECIALISTES:

LE NOUVEL ORDINATEUR HP 2100
oulI SERA PRESENTF POUR LA
PREMIERE FOIS EN EUROPE AU SICOB
EST ENTIEREMENT COMPATIBLE AVEC
LA GAMME PRECEDENTE HP 2114,
2116, PLUS RAPIDE QUE SES
PREDECESSEURSy IL EST D'UN COUT
INFERIEUP GRACE A L'UTILISATION
DYUNE MEMOIRE MORTE
MICROPROGRAMMEE. UNE OPTION
VIRGULE FLOTTANTE CABRLEE POUR LE

CALCUL SCIENTIFIQUE EST
DISPONIBLE. CET ORDINATEUR _NE
NECESSITE PAS DY'INSTALLATION
SPECIALE., COMPACTe IL PEUT MEME
ETRE POSE SUR UNE TABLE ! UNE
TRES LARGE GAMME DE
PERIPHERIOQUES PEUT LUI ETRE
CONNECTE s DISQUES _ ET_ BANDES
MAGNETIQUES) IMPRIMANTES»

TERMINAUX DE VISUALISATION, ETC.
e o BENEFICIANT INTEGRALEMENT DE
LA PROGRAMMATION DEVELOPPEE POUR
LA SERIE PRECEDENTEs CE NOUVEL
ORDINATEUR EST DONC DES A
PRESENT OPERATIONNEL. LE LANGAGE
SNOBOL LUI APPORTE OFS FACILITES
SUPPLENENTAIRES POUR LE CALCUL
SCIENTIFIQUE ET L'EDITION DOE
TEKTES.

EDITED TEXT!

4 COLUMNS,

LA SOCIETE HEWLETT-PACKARD
QUI REGROUPE QUINZE MILLE
PERSONNES DANS LE MONDE »
CONSTRUIT DEPUIS PLUSTEURS
ANNEES DES ORDINATEURS DE
PETITE ET MOYENNE PUISSANCE,
TROIS MILLE DE CES MACHINES
ONT ETE VENDUES DONT PLUS
DYUNE CENTAINE EN FRANCE. LES
APPLICATIONS DE CES
ORDINATEURS SONT TRES VARIEES!
CALCUL SCIENTIFIQUE, GESTION,
CONTROLE DE PROCESSUS
INDUSTRIELS ETCe o «

NOS ORDINATEURS DISPOSENT
D*UN SOFTWARE TRES COMPLET,
LES ULANGAGES DE PROGRAMMATION
HABITUELS» ASSEMBLEUR,
FORTRAN, ALGOLs BASIC SONT
DISPONIBLES. DES MONITEURS,
BANDE PAPIER, BANDE
MAGNETIQUEy DISQUE ET TEMPS
REEL PERMETTENT LA COMPILATION
ET L'EXECUTION DES PROGRAMMES,
CEPENDANTs CES LANGAGES SONT

30 CHARACTERS PER COLUMN

MAL ADAPTES AUX PROBLEMES DE
RECONNATISSANCE DE CARACTERES)
DE JUSTIFICATION DE TEXTEs DE
RECHERCHE DE STRUCTURE, AUSSI.
UN NOUVEAU LANGAGE, SNOBOLJ
A=T-IL ETE INTRODUIT POUR
PERMETTRE OE RESOUDRE AISEMENT
CES PROBLEMES,

SNOROL3 EST CONCU POUR LA
MANIPULATION DE CHuIVSS DE
CARACTERES. IL PERMET OE
DEFINIR DE TELLES CHAINESe. DE
LES ASSOCIER ET AUSSI
D'EFFECTUER UNE RECHERCHE POUR
SAVOIR S1 UNE CHAINE OE
CARACTERES EST CONTENUE DANS
UNE AUTRE. LES CHAINES PEUVENT
BIEN ENTENDUES ETRE LES LIGNES
D'UN TEXTE. ON CONCOIT QU'IL
SO17 ALORS FACILE DE
CONSTRUIRE DANS CE LANGAGE UN
PROGRAMME FAISANT LA
JUSTIFICATION D'UN TEXTE ET SA
MISE EN PAGE. LE PROGRAMNE QUI
A PERMIS LA JUSTIFICATION SUR

3 COLONNES DE CE TEXTE NE
DEMANDE PAS PLUS DYUNE
CENTAINE D*INSTRUCTIONS!!!

CE PROGRAMME NECESSITE
SEULEMENT UN ORDINATEUR
HEWLETT=-PACKARD DE 16. 000
MOTS DE 16 BITSy UNE TELETYPE,
UN LECTEUR ET UN PERFORATEUR
RAPIDES DE RUBAN. UNE
UTILISATION PLUS SOUPLE PEUT
ETRE oATENUE EN ADJOIGNANT UN
DISQUE MAGNETIQUE.

POUR LES SPECIALISTESS

LE NOUVEL ORDINATEUR HP
2100 QUI SERA PRESENTE POUR LA
PREMIERE FOIS EN EUROPE AU
SI1Cco8 EST ENTIEREMENT
COMPATIBLE AVEC LA GAMME
PRECEDENTE HP 2114, 2116, PLUS
RAPIDE QUE SES PREDECESSEURS,
IL EST O°'UN COUT INFERIEUR

GRACE A L'UTILISATION D'UNF
MEMOIRE MORTE MICROPROGRAMMEE,
UNE OPTJON VIRGULE FLOTTANTE
CABLEE POUR LE CALCUL
SCIENTIFIQUE EST DISPONIBLE,
CET ORDINATEUR NE NECESSITE
PAS DCINSTALLATION SPECIALE,
COMPACTs IL PEUT MEME FTRE
POSE SUR UNE TARLE ! UNE TRES
LARGE GAMME DE PERIPHERIGQUES
PEUT LUT ETRE CONNECTF:
DISQUES ET RANDES MAGNETIQUES,

IMPRIMANTES TERMINAUX NE
VISUALISATION, €YCe . .
BENEFICIANT INTEGRALEMENT DE

LA PROGRAMMATION DEVELOPPFE
POUR LA SERIE PRECEDENTEe. CE
NOUVEL ORDINATEUR EST DONC DES
A PRESENT OPERATIONNEL. LE
LANGAGE SNOBOL LUI APPORTE DES
FACILITES SUPPLEMENTAIRES POUR
LE CALCUL SCIENTIFIQUE ET
LYEDITVION DE TEXTES.

1 SNOBOL L
2 ESPACE = ¢
3 2 = 12?
4 DEBUT SYSPOT = *VALEUR MAXI, DE N ?¢
S SYSPLT = ¢
6 FIN = SYSPIT
7 0O€8 N = NE(NJFIN) N + *]¢ /F (END)
8 X = FLOAT(2 # N) 2 AN
9 Y=2AL'=-'N)
10 ESPACE SESN/ (4 = SIZE(N))®
11 ESPACE SESX/(*20* = SIZE(X))*
12 SYSPLT = ¢ ¢ ESX X v ¢ ESN N ¢ LI ¢ /(DEB)
13 END
FIN OE COMPILATION , NOMBRE D'ERREURS!: 0

NOMBRE UE MOTS OCCUPES PAR LE PROGRAMMES 293

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

526288

1048576

2097152

4194304

8388608

16777216

33554432

67108864
134217728
268435456
536870912
1073741824
2147483648
4294967296
8589934592
17179869184
34359738368
68719476736
137438953472
274877906944
549755813888
1099511627776
2199023255552
4398046511104
8796093022208
17592186044416
35184372088832
T0368B744177664
140737488355328
2R1474976710656
562949953421312
1125899906842624
2251799813685248
4503599627370496
9007199254740992
18014398509481984%
3602R797018963968
T2057594037927936
1464115188075855872
288230376151711744
§76460752303423488

e o ol
OB NINPSPWN=OOR~NINIWN -~

WWNNNVNNNNNNN
~OOVINIPNLWN=O

ww
whnN

LLLWUWWWWW
O OVRNONS

Y Y YR
~rNEeWN

nue»r
-0 0 ®

5]
L]

unanuunnan
COI~NNS+W

0.5

0.25

0.125

0.0625

0.0312S

0.015625

0.0078125

0.00390625

0.001953125

00009765625

0.00048828125

0.000244140625

0.0001220703125

0.00006103515625

0.000030517578125

0.0000152587890625

0.00000762939453125

0.000003814697265625

0.0000019073486328125

0.00000095367431640625

0.0000006475837158203125

0.0000002384185791015625

0.00000011920928955078125

0.000000059604644775390625

0.0000000298023223876953125

0.00000001490116119384765625
0.000000007450580596923828125
0.0000000037252902984619140625
0.00000000186264514923095703125
0.000000000931322574615478515625
0.0000000004656612873077392578125
0.00000000023283064365386962890625
0.000000000116415321826934814453125
0.0000000000582076609134674072265625
0.00000000002910383045673370361328125
0.000000000014551915228366851806640625
0.0000000000072759576141834259033203125
0.00000000000363797880709171295166015625
0.000000000001818989403545856475830078125
0.00000000000090949470177292R23791503906<25
0.0000000000004547473508R646411895751953125
0.000000000000227373675443232059478759765625
0.000000000000113686R377216160297393798828125
0.00000000000005684341886080801486968994140625
0.000000000000028421709430404007434844970703125
0.0000000000000142108547152020n037174224853515625
0.00000000000000710542735760100185871124267578125
0.000000000000003552713678800500929355621337890625
0.0000000000000017763568394002504646778106689453125
0.0000000000000008RR1TR419T0012523233890533447265625
0.000000000000000444089209R50062616169452667236328125
0.0000000000000002220446049250313080847263336181640625
0.00000000000000011102230246251565404236316680908203125
0.000000000000000055511151231257L27021181583404541015:25
0.000000000000000027755575615A289135105907917022705078125
0.00000000000000001387778780781445675529539585113525390625
0.000000000000000006938893903907228377647697925567626953125
0.0000000000000000034694469519536141888238489627838134765625
0.00000000000000000173472347597680709441192448139190673828125

1152921504606846976
2305843009213693952
4611686018427387904
9223372036854775808
18446744073709551616

60
61
62
63
64

0.000000000000000000867361737988403547205962240695953369140625
0.0000000000000000004336R0B689942017736029R811203479766R45703125
0.00000000000000000021684043449710088680149056017398834228515625
0.00000000000000000010842021724855044340074528008699417114257812S
0.0000000000000000000542101086242752217003726400434970855712890625

DEBUT

Bl el el ol et
OO~NPNPWN=SOBNON S WN -

SNOBOL oL

SYSPOT =

SYSPOT = ¢ PROGRAMME DE TABULATION DE FACTORIELLE N?
POUR FAIRE UN SAUT DE PAGE

SYSPLT = 1]¢

SYSPLY = 0

SYSPLT = ¢ PROGRAMME SNOBOL OE TABULATION DE FACTORIELLE

SYSPOT = SVALEUR MAXIMUM DE N ? _°

E = SYSPIT

SYSPOT = (LT(Es?0?) *JE VEUX UN NOMBRE POSITIF* /S(DEBUT)
SYSPOT = *IL FAUT IMPRIMER A PARTIR DE !

XIMP = SYSPIT .

SYSPOT = 'COMBIEN VOULEZ-VOUS DE CARACTERES PAR LIGNE _°¢
XCAR = SYSPIT

P = Q¢
X = 9]¢
20 RETOUR P = NE(PsE) P ¢+ 010 /F (END)
21 X=Xep
22 Z=2xX
23 Z = JLT(PWXIMP) /S{RETOUR)
24 z ®B/(XCAR = 030°)e = /S(WRITE)
25 8 =12
26 WMWRITE SYSPLT =
27 SYSPLT =
28 SYSPLT =
29 SYSPLY = ¢ FACTORIELLE (' P ¢) =% 8
30 B = EQ(Bs2) /S (LONG)
31 IMP Z = ¢ v 7
32 INP1 Z *SYSPLT/XCAR® = 0 /S{IMP])
a3 SYSPLT = Z
34 LONG SYSPLT =
35 SYSPLY = ¢ SOIT * SIZE(X) * CARACTERES! / (RETOUR)
36 END
FIN DE COMPILATION , NOMRRE D*ERREURS? 0

NOMBRE DE MOTS OCCUPES PAR LE PROGRAMME: 544

PROGRAMME SNOBOL DE TABULATION DE FACTORIELLE N

FACTORIELLE (49R) = 48903279598R420R692189333809310809323661620612437646662093842037618618730075679349120226242493800728
909874214337267349034722960809932573949822786393424165472857344977712747910913670777900883483665522574869349604586395471636355789
4230974040499103976708568716062315T1742939857185495140858813762835131853592731374262506767493368887927817327619484053414766844672
206598436782375875809864052859213264653372169637005960038332251017681999898876040432572861207542204690441581193460564006510582742
7756970845901200234474145032925901751782026779223461286483741177607249924846680928112732567753434414856087566940983410396816614184
129602398702861502626505259814625516813822944549602592127703705963627992787412303378681451959807425239242265402097522071882090214
638608500051382859329165963520410628104233297453470859543551613744071948B4661287911891604153R8480733008384844598933046785629604639
562438299720075091914905365451384368266070950506884190161954563270477653027976468690636861249056062002640551120268241945243186595
102720070080000000000000

SOIT 1129 CARACTERES

FACTORIELLE (499) = 24402736519822201374024775708660938525071486856063B5684384827176771690746307763995210992895004406563
726027232956429640716B326757444156354400961570410318658570955815143878661207545921718172540858349095764849825452688611340346541538
9221256046209052884377575789315095542997269887355620752885480676547307949427729557569908769791910750759808464821225472653968655491
43109261995440556202912216237674741906203271264B865974059127793257823317949539144175853R57742563560140530349015536821439248780788
6450728452104669891700259837143002497413923136283250718113386847626017712498493783128253551308963773013187695903550721788011490477
88067159695272788981062612464749R8132890097649330151893471724149275850368400918739385962044527943905194381890435646663513869163017
104665641525640046805253815796684903424012415429281958912232255258251902474459826680339104727701885771184037454867590346029172715
14165671156031747086553777736024n0799764769404302935210890815327071968348860960257876627793763278974939317635009013852730676350110
95625728000

SOIT 1132 CARACTERES

FACTORIELLE (S00) = 12201368259911100687012387R5423046926253574342803192842192413588385845373153881997605496447502203281
8630136164771482035841633787220781772004B07R52051593292854779075719393306037729608590862704291745478824249127263443056T70173270769
46106280231045264421RRT8TB9465754777149R6349436T7T810376442740338273653974T713864T7T8784954384895955375379904232410612T71326984327745
7155463099772027810145610811883737095310163563244329870295638966289116589747695720879269288712817R0070265174507768410719624390394
322536422605235945850129918571501248706961568141625359056693423813008856249246891564126775656481886506593847951775360894005745238
9403357984763639449053130623237464906644504B82466507594673586207463792518420045936969298102226397195259719094521T7823331756934581508
5523328207628200234026269070898342451712006207714640979456116127629145951237229913340169552363850942885592018727433795173014586357
570828355780158735432766888686801203998823847021514676054454076635359841744304801268938313896881639487469658817504506926365338175055
47812864000
000

SOIT 1135 CARACTERES

-t Gt Gud P Gt Gt Pt b
OB NRANPWN=OODNOVN W

U EERE R EX N ¥ DCPhlgldh!“ldhl“(d(ﬂh’&f“h’RQN!VN’NDN
O OVDONPOVNSWNOIODNPIPNLPWN =D OONRAUTSWN>O

¥
N

[* LR K]
aNe W

[B R
CR-K K]

SNOBOL oL
SN E NSRRI R RSN NN RN NORRRR LRGNNSR RERAERIRRRNNRRERNNSARGRRNND

SR0RGSNNBRBTRVNBVTVVVRBR VIRV DBRATVVVRARVVNNVV0NVRVBRCRSORGNRRGGES

SUIT

CALCUL DE €: BASE DES LOGARITHMES NEPERIENS
PAR LA SOMME DE LA SERIE

E =14+ 1711 ¢+ 1721 ¢ 1731 ¢+ 1781 ¢ ceeee e ¢+ 1/N! ¢ ..

DEFINE (*IMPRI(ZsNosCHAIN) 09 * IMPRI 9 *BoNB?)
DEFINE (*SAULIG(N) *9?SAULe*I")

L
L 4
L]
L]
L
-
*

SYSPOT = *COMBIEN DE CARACTERES PAR LIGNE VOULEZ-VOUS ? ¢

NBCAR = SYSPIT

SYSPLT = ¢]¢

ESPACE = ¢

SPACE = ¢ ¢

€ = NBCAR / 2% - 133¢

ESPACE «GT(EL?0?) *SPACE/E* /JF(SULIT)
SYSPLT =

SYSPOT = *COMBIEN DE DECIMALES VOULEZ=-VOUS ? -
F = SYSPLTY

SYSPLY = SPACE

¢ 100 BNEOEERRNATRANRNTTRNEIERBRNIVRARERVIVTRIC TRV AVBABRNTR2R800

ot
ot®
ot
T
ot®
Y
(X

T

SYSPLY = SPACE
L 1

SYSPLY = SPACE
CALCUL ©OE € ET Pl .o

SYSPLT = SPACE
' 1]

SYSPLT = SPACE
.
SYSPLT = SPACE
[1]
SYSPLT = SPACE
E = 1 ¢ 1/11 + 1721 ¢+ 1/31 ¢ o0 &« + 1/N! ¢ L. .
SYSPLT = SPACE
(1
SYSPLT = SPACE .
PI/&¢ = & ARCTG 1/5 <= ARCT6 17239 LA
SYSPLT = SPACE
.
SYSPLT = SPACE

e IR NNENANSSERNGNGRNNEBTINANGRNETRNNNNGNNENNRNASRONEBARONANNNARENY

*
L}

QN
QN1

ERR

SYSPOT = SAULIG(*10°)

X = F ¢ 02¢

E = 02,5

A= 20

Zl = A

C = FLOAT(X ¢ ¢30) 3¢ /(QNY)

C = NE(Z1+E1) C ¢] /F (FIN)
A= AaAsesC

Z=E

E=E ¢+ *10 7 A

r 4 eZ1/Xe /F (ERR)

E SE1/Re /S (QN)

SYSPOT = NE(Ce?®3%) 'ERREUR § ¢ /S (END)F (QN)

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

LR N 4

rm.
[« 2
Z2Z
@

CA

LN BN BU BN B BN BN BN BN BN BN BN BN J

*
L

FINCALPI

[2K 2 N B I J

MPRI

NB = IMPRI(Z1+NRCARy? E = V) = 20
SYSPOT = SAULIG(*2?)
SYSPLY = ¢ SOIT * NR * DECIMALES EXACTES®

SYSPOT = SAULIG(*10")

Z1 = FLOAT(+0*)

LCUL DOE PI:
PAR LA SOMME DE LA SERIE

PI/& = 4 ARCTG 1/5 = ARCTG 17239

110" A (F ¢ 049)
40 & ¢

= 0]

(XL

(11

12390

']

N

(Y+C) /F(B)
+SIG* (K /7 (U®N)=-=C7/Y)
® 250

® 57121°

+ 120

SIG ® v=1v /(A)

L

L

L

'K) /F(FINCALPI)
+SIG* K/ Y

® 1269

. 120

SIG ® =10 /(B)

-

ol anNmesoOonHumMmsit b NOU

-

NZCUese CZECCNe KZCCLNXO
nNzZcwn<ZnNz<acw

—t

S = 14t &g
S ®/1108 SV/Fe sNe = 13,0 ¥

NB = IMPRI(S+NRCARe" P1 =) = #2¢
SYSPOT = SAULIG(*29)

SYSPLYT = ¢ SOIT * NB * DECIMALES EXACTES?®
SYSPLY = *]1°¢ /7 (END)

PROGRAMME IMPRI

IMPRY = SIZE(2)
4 #8/(N - SIZE(CHAIN))® = ' /S(MRITE)

/ (LONG)

(AL 22222222 X1 222222222 22X 2 22 L2l 2222222222222 X222]

L2222 222222222 2222222222222 2222222222222 2222232122222 2222 Yy

121
122
123
124
125
126
127
128
129
130
131
132
133
134

FIN DE COMPILATION . NOMBRE D'ERREURS?

WRITE

MNP

END

B =12
SYSPLY
SYSPLTY CHAIN B
B = EQUALS(B»2)
2 *SYSPLT/Ne
SYSPLY = 2
SYSPLY =

SYSPLT = (NE(IsN)
T=14¢)0

/S (RETURN)
s 00 /S (IMP)

/ (RETURN)

/F (RETURN)
/ (SAUL)

NOMBRE UE MOTS OCCUPES PAR LE PROGRAMME: 1375

GREBEBATRDVERRITRERNENBIRRBRRBLORRRSCIBAINIDNIBVN0BBRRBRQBOTRDENEY

CALCUL DE E ET PI

- °
. ™
» o
- -
- -
- E = 1 ¢ 1711 ¢ 1721 & 1/30 ¢ qee ¢ ¢+ 1/Nl ¢ .. -
. -
- PI/¢ = & ARCTG 1/5 =~ ARCTG 17239 -
- .
- .

CRHBNBBVVNVVABIVEIRVVVVAVNRVRACVVOVRVINNVBVRTNBRNTANNRGRNRCES

E = 2.71828182845904523536028747135266249T7757247093699959574966967627T7240766303535475945T713R8217852516642747746639193200
3059921817413596629043572900334295260

SOIT 150 DECIMALES EXACTES

PI = 3,14159265358979323846264338327950288419716939937510582097494459230781640628620899R86280348253421170679821480865132823
06647093644609550582231725359408128

SOIT 150 DECIMALES EXACTES

AAriorae vt

Example _- _Tower of Hanoi

The Tower of Hanoi is a game derived from the ancient Tower of Brahma, a
ritual allegedly practiced by Brahman priests to predict the end of the world.
At the time of creation, 64 golden discs of decreasing size appeared stacked on
a diamond needle. Nearby were two other diamond needles, both empty. The
Brahman priests, created at the same time, were set to the task of moving the
discs from their original needle to a second needle using, when necessary, the
third needle as temporary storage. Before all 64 discs are moved to the second
needle and stacked in decreasing size, the end of the world will be upon us.

CREATION INTERMEDIATE END OF
STORAGE THE WORLD
| | |
= | T
e =] | /L
— | A
e | / | \
e] | / | \
s S | / | \
e | / | \
_——g | / | \
: } oo
I | / | \
: l '
= : [
= = | / | \
I | / | \
T | / | \
T | N | \

— =
L1177 077 7777777277 \277/77 7777777777777 77\/7777/7777777777/777/\//7727//77777777777
| | |

Movement of the discs is governed by the rules:
g

1) only one disc may be moved at a time,
2) a disc may be moved from any needle to any other, and
3) at no time may a larger disc rest upon a smaller disc.

A solution to the Tower of Hanoi is a recursive function which prints out
the steps necessary to move N discs from one needle to another (where N is
hopefully a good deal smaller than 64). A program that defines the function
HANOI and tests it by moving 5 discs from needle A to needle C follows.

DEFINE (' HANOI (N, NS, ND,NI) ') : (HANOI. END)

HANOI EQ (N, 0) : S (RETURN)
HANOI (N - 1,NS,NI,ND)

OUTPUT = 'MOVE DISC ' N ' FROM ' NS ' TO ' ND
HANOI (N - 1,NI,ND,NS) : (RETURN)
HANOTI. END
*
TEST HANOI (5, 'A','C','BY)

END

42-381 30 SHEETS 3 SQUARE

AN

i

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

MOVE:

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

DIsCc 1
DISC 2
DISC 1
DISC 3
DISC 1
DISC 2
pDISC 1
DISC &
DISC 1
DISC 2
DISC 1
DISC 3
DISC 1
DISC 2
DISC 1
DISC 5
DISC i
DISC 2
DISC 1
DISC 3
DISC 1
DISC 2
DIsSC 1
DISC 4
DISC 1
DISC 2
DISC 1
DISC 3
DISC 1
DISC 2
DISC 1

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

PHWrFQPIPOITQAQADIOCIFAPZQADONQAI PRI OP >

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
O
TO
TO
TO
TO
To
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

QOPOIPQAPYPIIOOPOARIQABPIPOINADOADDC

The program logic can be seen by induction. Clearly, moving no discs
requires no steps. Moving one disc from needle A to needle C requires one step.

MOVE DISC 1 FROM A TO C
Moving two discs from A to C requires three steps.

MOVE DISC 1 FROM A
MOVE DISC 2 FROM A TO C
MOVE DISC 1 FROM B

Moving three discs from A to C requires seven steps.

MOVE DISC 1 FROM A TO C
MOVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 3 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C

104

~arionace

The general solution is:

MOVE N-1 DISCS FROM A TO B
MOVE DISC N FROM A TO C
MOVE N-1 DISCS FROM B TO C

The implementation is simple. HANOI is defined with four arguments:

1) N is the number of discs to be moved,
2) NS is the starting needle,

3) ND is the destination needle, and

4) NI is the intermediate storage needle.

On entry to HANOI, the value of N is compared with zero. If N is zero, no discs
are moved and the function returns. If N is not zero, HANOI is called
recursively to move N-1 discs from the starting needle to the intermediate
storage needle, Having done that, the command to move the Nth disc from the
starting needle to the destination needle is printed. Finally, HANOI is called
a second time to move the N-1 discs from intermedijate storage to the destination
needle.

T SNopoL4 prepowsiod lan-g.0.00
4.2 RE, Q{\lxwr(,d , 4 F Tooge, 17, Pelewrley,
L Telpbon Lodabeits | hecempmakeal
Trambe - Woll, e, &ghwood (L‘ﬂa) N oty

1 SNOBOLL
? SRBODDRBDOBBDEBRV BRSNS DVRODRBRRBRBRORORRTVRNRRRVECORBBDRRRARORTRRORY
3 & -
4 = TOWER OF HANOI -
5 = -
6 * -
7 = THE TOWER OF HANOI IS A GAME DERIVED FROM THE ANCIENT THOWER ¢
8 * OF BRAHMA, A RITUAL ALLEGEDLY PRACTICED RY BRAHMAN PRIESTS -
9 & TO PREDICT THE END OF WORLD. AT THE TIME OF CREATIONs 64 -
10 * GOLDEN DISCS OF DECREASING SIZE APPEARED STACKED ON A -
11 = DIAMOND NEEDLE. NEARBY WERE TWO OTHER DIAMOND NEFDLES, BOTH #
12 EMPTY., THE BRAHMAN PRIESTSe CREATED AT THE SAME TIMEs WERE .
13 = SET TO THE TASK OF MOVING THE DISCS FROM THEIR ORIGINAL A
14 & NEEDLE TO A SECOND NEEDLE USINGsy WHEN NECESSARYs THE THIRD L4
15 & NEEDLE AS TEMPORARY STORAGE. BEFORE ALL 64 DISCS ARE MOVED -
16 TO THE SECOND NEEDLE AND STACKED IN DECREASING SIZEs THE END *
17 & OF THE WORLD WILL BE UPON US. -
18 = »
19 * MOVEMENT OF DISCS IS GOVERNED BY THE RULES? -
20 (1) ONLY ONE DISC MAY BE MOVED AT A TIME, -
21 & (2) A DISC MAY BE MOVED FROM ANY NEEDOLE TO ANV Z74ERe AND ®
22 * (3) AT NO TIME MAY A LARGER DISC REST UPON A SMALLER DISC *
23 o ™
26 ® A .
25 @ A SOLUTION TO THE TOWER OF HANOI IS A RECURSIVE FUNCTION -
26 = THAT PRINTS OUT THE STEPS NECESSARY TO MOVE N DISCS FROM -
27T # ONE NEEDLE TO ANOTHER, -
28 .
29 .
30 SRR NSRRI NN NSRS R RN R RN NNENEERRRNRGNINNERRRNNRIBRRNES
3]
32 =
33 DEFINE (*HANOI (NyNSsNDeNTI) 9 *HAN? 9 *P?)
34 SYSPLT =)¢
35 OEBUT SYSPOT = *COMBIEN DE DISQUES VOULEZ VOUS ? .°
36 K = SYSPIT
37 SYSPOT = .LT(Ke?0') °O'DONC VOUS N® QUOTE °*EN VOULEZ"
38 . ' PLUS,? /S (END)
39 SYSPLT = ¢ JEUX AVEC * K * DISQUESY
40 SYSPLT =
41 SYSPLY =
42 Z = HANOI(Ky'A0o0C?,?8?)
43 SYSPLT =
Y'Y SYSPLY =
45 SYSPLT =
46 SYSPLT = / (DEBUT)
4T HAN P = ,EQINe*0?) /S (RETURN)
48 Q@ = HANOI(N = 919oNSoNIJND)
49 SYSPLY = ¢ DISQUE * N ¢ DE * NS * A * ND
50 Q@ = HANOI(N = ?19y,NIoND¢NS) 7/ (RETURN)
51 END
FIN DE COMPILATION . NOMBRE D*ERREURS!? 0

NOMBRE DE MOTS OCCUPES PAR LE PROGRAMME! 383

JEUX AVEC 3 DISQUES

DISQUE 1 DE A AC
DISQUE 2 ©DE A A B
DISQUE 1 DECAB
DISQUE 3 DE AAC
DISQUE) OE B A A
ODISQUE 2 DE B A C
DISQUE 1 DE AAC

JEUX AVEC S ODISQUES

DISQUE 1 DE A AC
DISQUE 2 DE A A B
DISQUE 1 DEC A B
DISQUE 3 DE A AC
DISQUE 1 DE B A A
DISQUE 2 DE B AC
DISQUE 1 DE A AC
DISQUE 4 DE A A B
DISQUE 1 DE C A B
DISQUE 2 DE C A A
DISQUE 1 DE B A A
DISQUE 3 DE C A B
DISQUE 1 DE A A C
DISQUE 2 DE A A B
DISQUE 1 DECAB
DISQUE S DE A AC
DISOUE 1 DE B A A
DISQUE 2 DEB AC
DISQUE 1 DE A AC
DISQUE 3 DE B A A
DISQUE 1 DE C A B
DISQUE 2 DE C A A
DISQUE 1 DE B A A
DISQUE 4 DE B AC
DISQUE 1 DE A AC
DISQUE 2 DE A A B
DISQUE 1 DEC A B
DISQUE 3 DE A AC
DISQUE 1 DE B A A
DISQUE 2 DEB AC

1 AAC

DISQUE DE

JEUX AVEC 6 DISQUES

DISQUE 1 DE A A B
DISQUE 2 DOE A A C
DISQUE 1 DEBAC
DISQUE 3 DE A A B
DISQUE 1 DE C A A
DISQUE 2 ©DOE C A B
DISQUE 1 DE A A B
DISQUE 4 DE AAC
DISQUE 1 DE B AC
DISQUE 2 DE B A A
DISQUE 1 DE C A A
DISGUE 3 DE B A C
DISQUE 1 DE A A B
DISQUE 2 DE A A C
DISQUE 1 DEB AC
DISQUE S DE A A B
DISQUE 1 DE C A A
DISQUE 2 ©DEC A B
DISQUE 1 DE A A B
DISQUE 3 DE C A A
DISQUE 1 DEBAC
DISQUE 2 DE B A A
DISQUE 1 DE C A A
DISQUE ¢4 DECAB
DISQUE 1 DE A A B
DISQGUE 2 DE A A C
DISQUE 1 DE B AC
DISQUE 3 DE A A 8
DISQUE 1 DE C A A
DISQUE 2 DE C A B
DISQUE 1 DE A A B
DISQUE 6 DE A A C
OISQUE 1 DE B AC
DISQUE 2 DE 8 A A
DISQUE 1 DE C A A
DISQUE 3 ODE B A C
DISQUE 1 ODE A A B
DISQUE 2 ©DOE A A C
DISQUE 1 DE B AC
DISQUE 4 DE B A A
DISOUE 1 DE C A A
DISQUE 2 DE C A B
DISQUE 1 DE A A B
DISQUE 3 DE C A A
DISQUE 1 DE B AC
DISQUE 2 DE B A A
DISQUE 1 DE C A A
DISQUE S DEBAC
DISQUE 1 OE A A B
DISQUE 2 DEARAC
DISQUE 1 DEBAC
DISQUE 3 DE A A B
DISQUE 1 DEC A A
DISQUE 2 DEC a 8B
DISQUE 1 DE A A B
DISQUE 4 ©DE A A C
DISQUE 1 DEBAC

DISQUE
DISQUE
DISQUE
DISQUE
DISQUE
DISQUE

= N\))

DE
DE
DE
DE
DE
DE

VDBPP>IDOD
D> >>D>

OODOD>D>

JEUX AVEC 0 DISOQUES

