
IBM 1620 Simulator Usage
23-Jun-2017

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2017, written by Robert M Supnik
Copyright (c) 1993-2017, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from Robert M Supnik.

1 Simulator Files ... 3
2 IBM 1620 Features .. 3

2.1 CPU .. 4
2.2 IO Operations ... 6

2.2.1 I/O Error Handling ... 6
2.2.2 Release Console Function .. 6

2.3 Console Typewriter (TTY) ... 6
2.4 1621 Paper Tape Reader (PTR) ... 7
2.5 1624 Paper Tape Punch (PTP)... 8
2.6 1622 Card Reader/Punch (CDR, CDP) .. 8
2.7 1443 Line Printer (LPT) .. 9
2.8 1311 Disk Pack (DP) .. 10

3 Symbolic Display and Input .. 11
4 Character Sets ... 11

4.1 RN – Read Numerically .. 16
4.1.1 RN to TTY ... 16
4.1.2 RN to CDR .. 16
4.1.3 RN to PTR ... 16

4.2 WN – Write Numerically .. 17
4.2.1 WN to TTY .. 17
4.2.2 WN to CDP .. 17
4.2.3 WN to PTP .. 17
4.2.4 WN to LPT ... 17

4.3 DN – Dump Numerically ... 18
4.3.1 DN to TTY ... 18
4.3.2 DN to CDP .. 18
4.3.3 DN to PTP ... 18
4.3.4 DN to LPT ... 18

4.4 RA – Read Alphanumerically .. 18
4.4.1 RA to TTY ... 18
4.4.2 RA to CDR .. 19
4.4.3 RA to PTR ... 19

4.5 WA – Write Alphanumerically ... 19
4.5.1 WA to TTY ... 19
4.5.2 WA to CDP .. 19
4.5.3 WA to PTP .. 19
4.5.4 WA to LPT ... 19

4.6 Read / Write Binary Paper Tape ... 20

This memorandum documents the IBM 1620 simulator. This simulator is based on Geoff Kuenning's 1620
simulator, which is used by permission.

1 Simulator Files

sim/ scp.h
 sim_console.h
 sim_defs.h
 sim_fio.h
 sim_rev.h
 sim_sock.h
 sim_timer.h
 sim_tmxr.h
 scp.c
 sim_console.c
 sim_fio.c
 sim_sock.c
 sim_timer.c
 sim_tmxr.c

sim/i1620/ i1620_defs.h
 i1620_cpu.c
 i1620_fp.c
 i1620_tty.c
 i1620_pt.c
 i1620_cd.c
 i1620_lp.c
 i1620_dp.c
 i1620_sys.c

2 IBM 1620 Features

The IBM 1620 simulator is configured as follows:

device names simulates

CPU IBM 1620 Model 1 or Model 2 CPU with 20K to 60K memory
 Model 1 options: indirect addressing, automatic divide,

 edit instructions, floating point
 Model 2 options: indexing, binary capability, floating

 point
TTY IBM console terminal
PTR IBM 1621 paper tape reader
PTP IBM 1624 paper tape punch
CDR,CDP IBM 1622 card reader/punch
LPT IBM 1443 line printer
DP IBM 1311 disk pack with four drives

The IBM 1620 simulator implements many unique stop conditions. On almost any kind of error the simulator
stops:

- Unimplemented opcode
- Reference to non-existent device

- Invalid digit
- Invalid alphameric character
- Invalid P address digit
- Invalid Q address digit
- Indirect address limit exceeded
- Invalid odd address
- Invalid even address
- Invalid function
- Invalid indicator
- Invalid return address register
- Skip to unpunched carriage control tape channel
- Card reader hopper empty
- Overflow with arithmetic stop switch set
- I/O error with I/O stop switch set
- Invalid disk drive
- Invalid disk sector address
- Invalid disk sector count
- Invalid disk buffer address
- Disk address compare error
- Disk cylinder overflow error
- Disk write check error
- Field exceeds memory
- Record exceeds memory
- Floating point mantissa exceeds maximum length
- Floating point mantissas not the same length
- Floating point exponent check with arithmetic stop switch set
- Floating point exponent missing high flag

The LOAD command is used to load a line printer carriage-control tape. The DUMP command is not
implemented.

2.1 CPU

The CPU options include the CPU model (Model 1 or Model 2), a number of special features, and the size of
main memory.

 SET CPU IA enable indirect addressing
 SET CPU NOIA disable indirect addressing
 SET CPU EDT enable extra editing instructions
 SET CPU NOEDT disable extra editing instructions
 SET CPU DIV enable divide instructions
 SET CPU NODIV disable divide instructions
 SET CPU IDX enable indexing
 SET CPU NOIDX disable indexing
 SET CPU BIN enable binary instructions
 SET CPU NOBIN disable binary instructions
 SET CPU FP enable floating point instructions
 SET CPU NOFP disable floating point instructions
 SET CPU RMOK enable record marks in add/sub/compare
 SET CPU NORMOK disable record marks in add/sub/compare
 SET CPU MOD1 set Model 1
 SET CPU MOD2 set Model 2
 SET CPU 20K set memory size = 20K
 SET CPU 40K set memory size = 40K
 SET CPU 60K set memory size = 60K

Model 1 options include IA, EDT, DIV, FP, and RMOK; the first three are on by default. Model 2 options
include IDX, BIN, and FP; IA, EDT, and DIV are standard on the Model 2.

The RMOK option enables a strange hack on the Model I, which caused record marks in the Q field of add,
subtract, and compare to be treated as 0. This was done, apparently, to get the paper-tape verification
program MI-015 to run. It is not available on the Model 2.

If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator
asks for confirmation. Data in the truncated portion of memory is lost. Initially, the CPU is a Model 1,
memory size is 20K, and indirect addressing, editing instructions, and divide are enabled.

Memory is implemented as 5 bit BCD digits, as follows:

 4 3 2 1 0

 flag 8 4 2 1
 <----- digit ----->

In BCD, the decimal digits 0-9 are (hex) values 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
respectively. 0xA is record mark, 0xC non-punching blank, and 0xF group mark, respectively.

CPU registers include the visible state of the processor. The 1620 has no interrupt system.

 name size comments

 PC 16 instruction storage address register (IR1)
 IR2 16 return register
 PR1 16 processor register 1
 PAR 16 P address register (OR2)
 QAR 16 Q address register (OR1)
 SW1 1 sense switch 1
 SW2 1 sense switch 2
 SW3 1 sense switch 3
 SW4 1 sense switch 4
 HP 1 high/positive indicator
 EZ 1 equal/zero indicator
 OVF 1 arithmetic check (overflow) indicator
 EXPCHK 1 exponent check indicator
 RDCHK 1 read check indicator
 WRCHK 1 write check indicator
 ARSTOP 1 arithmetic check stop switch
 IOSTOP 1 I/O check stop switch
 IND[0:99] 1 indicator array
 IAE 1 indirect address enabled (Model 2 only)
 IDXE 1 indexing enabled (Model 2 only)
 IDXB 1 indexing band select (Model 2 only)
 PCQ[0:63] 16 IR1 prior to last branch;
 most recent IR1 change first
 WRU 8 interrupt character

The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET
CPU HISTORY and SHOW CPU HISTORY commands:

 SET CPU HISTORY clear history buffer
 SET CPU HISTORY=0 disable history

 SET CPU HISTORY=n enable history, length = n
 SHOW CPU HISTORY print CPU history
 SHOW CPU HISTORY=n print first n entries of CPU history

The minimum length for the history is 64 entries; the maximum length is 65536 entries.

2.2 IO Operations

The 1620 does not have asynchronous or overlapped IO. When an IO instruction is issued, the machine
suspends instruction execution until IO is completed or stopped by the operator. From the program's point of
view, all IO is instantaneous.

However, from an operational point of view, the delays between digits or characters may be significant. For
example, the 1620 Model I typewriter did not have a correction capability. The convention was that if the
operator typed an incorrect character, he would set a sense switch and terminate the IO operation manually
by pressing RELEASE and START. The program would see that the sense switch was set and return to the
typewriter input instruction or routine.

Accordingly, the typewriter, paper-tape reader, and paper-tape punch implement deferred IO. In this mode,
the simulator implements delays between digits or characters and continues IO execution through errors.
This allows the user to interrupt a type-in with ^E, or to change paper tape input files after an end of file, and
continue execution of the current IO operation. Alternately, the user can terminate the IO operation with the
command SET CPU RELEASE.

All other IO devices execute IO instructions immediately.

2.2.1 I/O Error Handling

The 1620 simulator stops on almost every IO error condition. When an error occurs, the simulator can be in
one of two states:

1. The simulator is in the instruction execution phase. The PC of the instruction containing the
error is reported.

2. The simulator is in the IO execution phase. The PC has been advanced, the instruction is
complete, but the IO operation is not complete. The PC of the next instruction is reported, along
with an informational message, "IO in progress."

In the first state, typing CONTINUE will repeat the current instruction, presumably after correction of the error.
In the second state, typing CONTINUE will return to IO execution. This allows the user to correct errors,
change input files, set sense switches, or take other actions.

2.2.2 Release Console Function

For all I/O stops, the simulator will return to the current instruction or IO operation unless directed otherwise.
The command SET CPU RELEASE directs the CPU to advance to the next instruction or to cancel the
current IO operation.

2.3 Console Typewriter (TTY)

The console typewriter (TTY) is a half-duplex console. Typewriter options include the ability to set variable
tab stops:

 SET TTY TABS=col;col;col... set tab stops at the specified columns

 SET TTY NOTABS remove all tab stops
 SET TTY DEFAULTTABS set tab stops every eight columns
 SHOW TTY TABS display current tab stops
 SET TTY 1DIGIT type flagged digits as letters
 SET TTY 2DIGIT type flagged digits as ~digit

When 1DIGIT is set, flagged 1 to 9 are displayed as J-R, flagged 0 as], flagged record mark as !, flagged
numeric blank as I, and flagged group mark as ". In read numeric mode, these characters can be entered to
represent the corresponding flagged digits. On a numeric read, flagged digits can also be entered as two
characters: ~digit.

The typewriter registers are:

 name size comments

 UNLOCK 1 keyboard unlocked flag
 FLAG 1 set flag on next input digit

COL 7 current column
 KTIME 24 keyboard polling interval
 TTIME 24 typewriter character delay

When the 1620 CPU requests input from the keyboard, a greater than sign (>) is printed. The CPU hangs
waiting for input until the return/enter key or the interrupt key is pressed. The typewriter has no errors.

2.4 1621 Paper Tape Reader (PTR)

The paper tape reader (PTR) reads data from a disk file. The POS register specifies the number of the next
data item to be read. Thus, by changing POS, the user can backspace or advance the reader.

The 1620 did not provide any hardware means for booting from a paper tape. Loading from a tape reader
was accomplished by inserting an instruction in location zero using the console INSERT key and the console
typewriter. The simulator, however, supports booting from the paper tape reader with the BOOT command.
BOOT PTR starts the most common paper tape boot sequence at location 0, namely 360000000300 inserted
at location 0, which reads the first tape record to location 0 and continues execution with the instruction just
loaded into location 12. Because there was no official standard boot sequence for paper tape, this may not
be correct for all programs.

The paper tape reader implements these registers:

 name size comments

 BIN 1 binary mode flag
 POS 32 position in the input file
 TIME 24 reader character delay

Error handling is as follows:

 error IOCHK processed as

 not attached x report error, stop

 end of file x report error, stop

 OS I/O error x set RDCHK indicator, report error, stop

 parity error 1 set RDCHK indicator, report error, stop
 0 set RDCHK indicator

2.5 1624 Paper Tape Punch (PTP)

The paper tape punch (PTP) writes data to a disk file. The POS register specifies the number of the next
data item to be written. Thus, by changing POS, the user can backspace or advance the punch.

The paper tape punch implements these registers:

 name size comments

 BIN 1 binary mode flag
 POS 32 position in the output file
 TIME 24 punch character delay

Error handling is as follows:

 error IOCHK processed as

 not attached x report error, stop

 OS I/O error x set WRCHK indicator, report error, stop

 invalid char 1 set WRCHK indicator, report error, stop
 0 set WRCHK indicator

2.6 1622 Card Reader/Punch (CDR, CDP)

The IBM 1622 card/reader punch is simulated as two independent devices: the card reader (CDR) and the
card punch (CDP).

The card reader supports the BOOT command. BOOT CDR starts the standard card boot sequence at
location 0.

The card reader reads data from a disk file; the punch writes data to a disk file. Cards are simulated as
ASCII text lines with terminating newlines. For each device, the POS register specifies the number of the
next data item to be read or written. Thus, by changing POS, the user can backspace or advance these
devices.

The card reader registers are:

 name size comments

 LAST 1 last card indicator
 POS 32 position in the reader input file

The card punch registers are:

 name size comments

 POS 32 position in the punch output file

Card reader error handling is as follows:

 error IOCHK processed as

 not attached x report error, stop

 end of file x report error, stop

 OS I/O error x set RDCHK indicator, report error, stop

 invalid char 1 set RDCHK indicator, report error, stop
 0 set RDCHK indicator

Card punch error handling is as follows:

 error IOCHK processed as

 not attached x report error, stop

 OS I/O error x set WRCHK indicator, report error, stop

 invalid char 1 set WRCHK indicator, report error, stop
 0 set WRCHK indicator

2.7 1443 Line Printer (LPT)

The IBM 1443 line printer (LPT) writes its data, converted to ASCII, to a disk file. The line printer can be
programmed with a carriage control tape. The LOAD command loads a new carriage control tape:

 LOAD <file> load carriage control tape file

The format of a carriage control tape consists of multiple lines. Each line contains an optional repeat count,
enclosed in parentheses, optionally followed by a series of column numbers separated by commas. Column
numbers must be between 1 and 12; a column number of zero denotes top of form. The following are all
legal carriage control specifications:

 <blank line> no punch
 (5) 5 lines with no punches
 1,5,7,8 columns 1, 5, 7, 8 punched
 (10)2 10 lines with column 2 punched
 1,0 column 1 punched; top of form

The default form is 66 lines long, with column 1 and the top of form mark on line 1, and the rest blank.

The line printer recognizes one option for emulating top of form – using multiple newline characters (the
default) or a single form-feed character:

 SET LPT FF emulate top-of-form with one form-feed
 SET LPT NOFF emulate top-of-form with multiple newlines

The line printer registers are:

 name size comments

 LBUF[0:119] 7 line buffer
 BPTR 7 buffer pointer
 PCTL 8 saved print control directive
 PRCHK 1 print check indicator

 PRCH9 1 channel 9 indicator
 PRCH12 1 channel 12 indicator
 PRBSY 1 busy indicator
 POS 32 position in the output file
 CCT[0:131] 32 carriage control tape array
 CCTP 8 carriage control tape pointer
 CCTL 8 carriage control tape length (read only)

Error handling is as follows:

 error IOCHK processed as

 not attached x report error, stop

 OS I/O error x set PRCHK, WRCHK, report error, stop

 invalid char 1 set PRCHK, WRCHK, report error, stop

0 set PRCHK, WRCHK

 invalid control x set PRCHK, report error, stop

2.8 1311 Disk Pack (DP)

The disk pack controller supports 4 drives, numbered 0 through 3. Disk pack options include the ability to
enable address writing (formatting).

 SET DPn ADDROFF set unit n address enable off
 SET DPn ADDRON set unit n address enable on

Units can also be set ENABLED or DISABLED.

The 1620 had no hardware provision to boot from a disk, so the simulator doesn't support the BOOT
command.

Unlike most simulated disks, the 1311 includes explicit representation for sector addresses. This is to
support non-standard formats, such as the inclusion of the drive number in the sector address. As a result,
1311 sectors are 105 digits long: 5 address digits and 100 data digits. If the 1311 has not been formatted,
the addresses are zeroes and are synthesized, if needed, based on the sector number.

The disk pack controller implements these registers:

 name size comments

 ADCHK 1 address check (compare error) indicator
 WLRC 1 wrong length record check indicator
 CYLO 1 cylinder overflow check indicator
 ERR 1 disk error indicator
 DPSTOP 1 disk check stop
 CYL[0:3] 8 current cylinder, units 0..3 (read only)

Error handling is as follows:

 error DPCHK processed as

 not attached x set ERR indicator, report error, stop

1311 data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur.

3 Symbolic Display and Input

The IBM 1620 simulator implements symbolic display and input. Display is controlled by command line
switches:

 -c display as single character (alphameric for CPU and
 DP, ASCII for others)
 -s display as alphameric string (CPU and DP only)
 -m display instruction mnemonics (CPU and DP only)
 -d display 50 characters per line, with flags denoted by
 "_" on the line above

Input parsing is controlled by the first character typed in or by command line switches:

 ' or -c character (alphameric for CPU and DP, ASCII for others)
 " or -s alphameric string (CPU and DP only)
 alphabetic instruction mnemonic (CPU and DP only)
 numeric octal number

Instruction input is free format and consists of an opcode and up to three operands:

 op {+/-}ppppp{(idx)},{+-}qqqqq{(idx)},flags

The p address and, if present, the q address, are always decimal. A plus sign is ignored; a minus sign
denotes indirect addressing (or a negative immediate operand). If indexing is enabled, addresses may be
indexed; index registers are decimal numbers between 1 and 7. The flags field is used to set extra flags on
the instruction. It consists of digit positions in ascending order, with no separators. For example,

 AM -12345(5),67890,110

translates into
 _ _ ___ _
 111234567890

The flag over digits 3 and 5 specify the P index register; the flag over digit 6 specifies the P indirect address;
the flag over digit 7 marks the high order digit of the immediate Q operand; and the flags over digits 1 and 10
are specified by the third (flags) field.

4 Character Sets

Each storage location in the IBM 1620 held 6 bits: 5 data bits and 1 check bit. The check bit was not
addressable by the program and was maintained by the machine so that each location had an odd number
of bits. The check bit is not simulated since it could not be referenced by any program instruction. On a real
1620, a parity error always indicated a hardware error and stopped the machine when detected.

The 5 data bits in each location consisted of a flag bit and 4 data bits. These are often shown as F 8 4 2 1 in
IBM documentation. The flag bit was used in several ways in the machine: to indicate the high order digit of
a field, to indicate a negative number, to indicate instruction indirect addressing, and to specify index register
modification of an address.

The 8 4 2 1 data bits have 16 possible configurations. Thirteen of these were valid characters in the internal
character set; of the remaining three, two were invalid and one could only be created in a special way. See
the note below.1

The record mark and group mark characters were used in several ways: to stop transmission of data on
output instructions to some devices and in some data movement instructions. The numeric blank character
was used to create a blank space on numeric output to some devices. Each of these 13 valid characters

1 Note: Bit configurations 1101 and 1110 were invalid, could not be created by any valid operation, and
were always treated as errors if encountered. As far as I know, these could only exist in storage as a result
of a machine malfunction.

The 1011 bit configuration could be created in the machine if a card or paper tape containing a period, a
comma, an equal sign or a dollar sign was read with an RN (read numerically) instruction. The dollar sign
would also set the flag bit. This bit configuration was treated the same as a record mark or group mark as far
as stopping data transmission by a TR (transmit record), a WN (write numerically) or a WA (write
alphamerically) instruction and tested as a record mark when referenced by the BNR (branch no record)
instruction. This behavior was a strange design choice by IBM since it could just as well have stored a
record mark. Operationally this character behaved the same as a record mark. The result of sending this
character to an output device is not specified in any IBM documentation and is treated as an error by the
simulator.

On a 1620-1 there was no way to distinguish the 1011 character from a record mark except that it might
produce an error on output to some device. Whether or not it did so is not known. On a 1620-2 machine with
binary capabilities, the BMK (Branch on Mask) instruction could test any bit and, therefore, distinguish this
character from a record mark. It’s unclear how this could be of any use to a program.

As final note, on a 1620-1 there was no way to detect that a character was a numeric blank. A numeric blank
could only be created in storage by reading it from a card, paper tape record or the console typewriter. On a
1620-2 machine with binary capabilities, the BMK instruction could determine that a character was a
numeric blank. It’s possible that this could have been of some use to a program but it seems unlikely that
any program was ever written that made use of this.

could have an associated flag bit. Therefore the 1620 internal character set consisted of exactly 26
characters. All data and instructions in storage are represented using these characters.

The IBM 1620 could read, process, and write alphameric data (letters, digits, some special characters).
These were stored internally as pairs of digits. The machine supported a number of different input devices
(console typewriter, paper tape reader, card reader, disk drive) and a number of output devices (console
typewriter, paper tape punch, card punch, line printer, disk drive). Except for the disk drives which
transferred data in 1620 internal code, all input devices responded to two kinds of read operations: RN (read
numerically) and RA (read alphabetically). Output devices other than disk drives responded to three kinds of
write operations: WN (write numerically), WA (write alphanumerically) and DN (dump numerically). The
numeric input and output operations transferred one 1620 character at a time; thus, on output, each storage
location produced one character on the console typewriter, one punched card column, one punched
character on paper tape, one character on the line printer. Similarly, on numeric input, each key typed on the
console typewriter, each card column read, and each paper tape character read was placed into one storage
location. The alphameric output operations transferred two 1620 storage locations to produce one character
typed on the console, one punched card column, one punched character on paper tape, one character on
the line printer. On alphameric input, each key typed, each card column read, and each paper tape
character read was transferred into two adjacent storage locations. On numeric input operations each digit
stored set all bits including the flag bit. Numeric output operations included the flag bit in determining the
character to type, punch or print. Alphameric input operations stored data without altering any flag bits that
might have been set in the input area. Alphameric output operations ignored the flag bits. The binary paper-
tape read and write operations operated like alphameric operations with respect to flags.

The IBM 1620 was designed in the late 1950’s and sold and used during the 1960’s. This was a period in
the history of computing that was populated with many different kinds of equipment. There were unit record
devices made by IBM and other companies which mostly processed data on punched cards. There were
many different computers made by various companies. There were numerous data recording devices that
read instruments and created punched paper tape or cards and there were devices with keyboards that
could be used to create paper tape or cards for input to these various devices. There were many different
printers connected to these devices that could print data from paper tape, punched cards and computers. It
should come as no surprise that these devices employed a number of different codes for punching holes in
paper tape and cards and different character sets for printers.

Some of the IBM 1620 input and output devices are simulated with text files containing ASCII characters.
Card decks and line printer output are simulated as text files; input and output from the console is simulated
by typing in the simulator window. Paper tape input and output are simulated as text files but are coded to
indicate the hole patterns that would have been in actual paper tape, not as equivalent ASCII characters.
Disk devices are written with internal representations of 1620 data. All of this means that it is possible to
prepare simulator card input files with just about any text editor; likewise, it is possible to view line printer
output and card output with most editors and it is fairly easy to print that output on any printer. Also, clearly,
creating or reading simulator paper tape files with an editor is not easy or practical; the same is true of disk
files.

In order to create input card decks for the simulator it is necessary to specify a correspondence between all
1620 characters and ASCII characters. For the most part, this is easy since the 1620 character set consists
of letters, digits and some punctuation and special characters. The same correspondence can be used for
console input and output and line printer output. There are a variety of difficulties with completely defining
such a correspondence. First, the 1620 character set includes some characters whose graphics are not
included in ASCII. For example, the ASCII set does not include the 1620 record mark, group mark, numeric
blank, etc. This is handled by assigning them to other ASCII characters not used in the 1620 set.

The second problem is that results of sending output to the console, printer, tape punch, and card punch
using a WN (write numerically) instruction were not the same for all devices. For example, sending a
numeric blank to the console typed an @ character; sending it to a tape punch punched an @; sending it to
a card punch or printer produced a blank space. All characters could be typed on the console but some
characters could not be printed on the line printer. All characters could be read from cards or paper tape; all

characters could be written to cards or paper tape. There are additional difficulties depending on whether an
I/O operation is numeric or alphameric.

A third problem involves the coding of special characters. In the 1960’s when the 1620 was in use, there
were a lot of different needs for printing special characters. There were not enough different characters that
could be represented on cards to meet all the needs. This was solved in various ways by different machines.
Often the same card code was printed as a different symbol depending on the application need. For
example, some printers would print +@=(as &’#%. In some cases, the character printed depended on what
hardware accessory (usually called a print belt, print chain or print bar) was installed in the printer.

The final problem is that machines in the 1620 days were often not completely specified. That is, the
documentation defined what would happen if certain combinations of characters were sent to an output
device but did not specify what would happen if other unused combinations of characters were used. For
example, if a WA (write alphabetically) instruction sent the two digits 41 to a card punch, paper tape punch,
the console or the printer, the letter A was printed or the code for A was punched. There are 100 two digit
combinations (00 – 99) which could be used but the 1620 did not define all of these. Some combinations
actually caused letters, digits, or special characters to punch/print and did not indicate an error. In some
cases, this lack of specification was deliberate to allow for possible future expansion. In some cases, it was
less expensive (i.e., used less hardware) to just ignore the unused combinations and not worry about what
the machine did with them. What actually happened when these unspecified values were sent to, for
example, the printer depended on the particular 1620 machine and its printer. Results were different
depending on the model and engineering level of the machine.

The following table lists the two digit alphanumeric codes recognized by the simulator. Actual results of
alphameric input and output operations vary slightly depending on the device. See the individual instructions
in sections below for details. Two digit codes not listed are invalid and will produce an error if written to an
output device. The codes shown are the only ones that will be placed into storage on a read operation. Not
all of these codes were supported for all devices.

All of this makes for a series of dilemmas since the simulator must deal with many different possibilities. To
begin with, it is necessary to specify ASCII characters to represent those 1620 characters that do not have
graphics that exist in ASCII. These 7 characters are flagged zero, numeric blank, flagged numeric blank,
record mark, flagged record mark, group mark, and flagged group mark. The simulator defines the following
ASCII characters to be used when entering data in a text editor for card input and for entering data in
response to RN (read numerically) at the console:

These same ASCII characters are used when data is written numerically to the console.

Data written numerically to the simulator console must also deal with flagged digits 1 – 9. The actual 1620
console typewriter was able to type an over-bar character without advancing the carriage and then print
another character under it. This feature was a function of the hardware and not under program control. Thus,
it could type the flagged versions of the 10 digits, numeric blank, record mark and group mark. Similarly, an
operator responding to a numeric read to the console had the ability to enter a flagged digit by first pressing
a flag key (which typed the over-bar without spacing the carriage) and then typing a digit, an @
(representing a numeric blank), record mark or group mark. Numeric output to the simulator console is
handled in one of two ways depending on which option is chosen on the SET TTY command.

- If the command SET TTY 1DIGIT has been issued, data written to the console in response to a
WN (write numerically) or DN (dump numerically) instruction will show a flagged zero as] and
flagged digits 1 – 9 as the letters J – R. This choice was made since the punch card codes for the
flagged digits is an 11 punch plus the digit which is the same code as the letters J – R. Output card
decks from the 1620 which contained numeric data were often printed on other machines which
interpreted these as letters and programmers were accustomed to seeing this kind of output. Also,
data written numerically to the 1620 line printer produced letters J – R for the flagged digits 1 – 9.
This is the default setting.

- If the command SET TTY 2DIGIT has been issued, data written to the console in response to a

WN (write numerically) or DN (dump numerically) instruction will show a flagged digit by printing an
accent (`) character in front of it.

Finally, for convenience in entering data on the console and creating files to be treated as input card decks,
the simulator always treats lower case ASCII letters as if they were upper case. All output is in upper case;
the IBM 1620 had no capability to process lower case letters. The 1620 console typewriter did not have
lower case letters.

There are a number of different charts in the IBM 1620 manuals which list the codes used for paper tape
and cards together with how various 1620 characters were treated by different input and output devices and
by the five different I/O instructions: RN, RA, WN, WA, and DN. None of these tables is complete in all
details. There are some special cases that are not shown. Details for each of these instructions are provided
below.

4.1 RN – Read Numerically

4.1.1 RN to TTY

As described briefly above, an operator using a real 1620 console typewriter could enter any of the 1620
numeric characters in response to a RN instruction. Unflagged characters were just typed using the keys for
digits, @ for a numeric blank and special keys for record mark and group mark. If the character was to be
flagged, the special Flag key was pressed first to print an over-bar followed by the key for the character.
Pressing the Flag key printed the over-bar but did not advance the carriage so that the flagged character
printed underneath it on the page. Characters were transferred to storage until the operator pressed the
console Release and Start keys or until he pressed the special RS key on the typewriter. Pressing the RS
key on the typewriter printed a ligature RS on the typewriter and performed the equivalent of pressing the
Release and Start console keys. This was the usual way to finish entering data since it provided a record on
the paper that it had been done. Pressing the RS key did not cause the typewriter carriage to return. The
usual program procedure for requesting operator input from the typewriter was to (1) execute a K (control)
instruction to return the carriage of the typewriter, (2) write a prompting message to let the operator know
what data was being requested, and (3) issue a read to the typewriter to get the operator input. This left the
typewriter carriage positioned just after the last character typed. The simulator treats pressing the Enter key
as equivalent to the 1620 RS key. This causes a carriage return which was not true on the 1620. This simply
means that the appearance of data on the screen will not exactly match what would have appeared on the
1620 typed output.

The simulator provides two options for entering flagged data in response to RN. The ASCII characters
defined for flagged special characters can be used:] for flagged zero, ! for flagged record mark, * for flagged
numeric blank, " for flagged group mark and the letters J-R or j-r for flagged 1-9. Alternatively, the ASCII
characters for unflagged data can be preceded by an accent (`) or tilde (~) and the next character typed will
be placed into storage with a flag.

The 1620-1 did not support backspace to correct a typing mistake. Each character entered was placed
directly into storage. The 1620-2 did support a correction key which typed an overstrike character (–), and
backed up the address in the OR-2 register so the next character could replace the one just placed in
storage. If the correction key was pressed multiple times, an overstrike character was typed each time and
the register decremented each time. If, for example, the operator typed 36 instead of the intended 26, use of
the correction key would leave 36– –26 on the console paper as a record of the operator action. The
simulator does not support this function.

4.1.2 RN to CDR

A numeric read to the card reader is one of the few cases which is completely defined in the IBM 1620
documentation. An almost complete table can be found on page 40 of IBM publication A26-5706-3, IBM
1620 Central Processing Unit, Model 1. Information is missing from this table for two characters: the flagged
record mark (card code 11-2-8) and the flagged group mark (card code 12-7-8); however, they were read as
expected. A read numeric to the card reader transfers 80 digits into storage.

4.1.3 RN to PTR

A numeric read to the paper tape reader, in contrast to the case for the card reader, is not completely
defined in IBM documentation. All 10 digits are read as themselves; the 9 letters J – R are read as flagged 1
– 9; a blank space is read as a 0; a single X punch is read as a flagged 0. Flagged and unflagged record
marks and group marks are read. A numeric blank is read. There is no mention of reading a flagged numeric
blank (tape code the same as an asterisk: X84) but this did work as expected.

IBM documentation described exactly what was placed into storage when a card containing alphabetic and
special characters was read numerically; unfortunately, there seems not to be any official documentation for
the paper tape reader. Since cards read and punched numerically produce the same codes for flagged digits
as the letters J-R (for flagged 1-9) and – (hyphen) and those same characters are also printed for flagged
digits, the simulator treats reading of alphabetic and special characters from paper tape exactly the same as
if they were read from cards. See the IBM document reference mentioned in the previous section concerning
the card reader.

There is a book, Basic Programming Concepts and the IBM 1620 Computer, by Leeson and Dimitry, which
has a table on page 77 of data read numerically from paper tape. It does not include information for record
mark and group mark but does confirm the results for alphabetic and special characters.

A read from paper tape transferred data until it encountered an EOL (end of line) punch in the tape. When
the EOL was encountered, a record mark was placed into storage.

4.2 WN – Write Numerically

4.2.1 WN to TTY

A numeric write to the typewriter caused characters to be typed beginning where the carriage was
positioned and continued until a character in storage was encountered that had both the 8 and 2 bits (with or
without a flag). This was usually a record mark but could also be a group mark or one of the unusual
characters mentioned above that are the result of reading a dollar sign, period, comma or equal sign from a
card. The ending character was not typed. Flagged characters were printed with the over-bar.

4.2.2 WN to CDP

A numeric write to the card punch always transferred 80 characters. All standard 1620 characters are
punched with their respective card codes except the numeric blank and flagged numeric blank. These cause
a blank column (no punches). No IBM documentation describes what happens if one of the 4 unusual
characters mentioned above that are the result of reading a dollar sign, period, comma or equal sign from a
card. A flagged zero was punched as 11-0.

4.2.3 WN to PTP

A numeric write to the tape punch transferred characters until a character in storage was encountered that
had both the 8 and 2 bits (with or without a flag). This was usually a record mark but could also be a group
mark or one of the unusual characters mentioned above that are the result of reading a dollar sign, period,
comma or equal sign from a card. The ending character was not punched; rather, an EOL character was
punched in the tape. A numeric blank was punched as a numeric blank; a flagged zero produced an X
punch.

4.2.4 WN to LPT

A numeric write to the printer caused data to be transferred to the printer buffer until the buffer was full or
until a character in storage was encountered that had both the 8 and 2 bits (with or without a flag). This was
usually a record mark but could also be a group mark or one of the unusual characters mentioned above
that are the result of reading a dollar sign, period, comma or equal sign from a card. The ending character
was not transferred to the buffer. Digits were printed as digits; a flagged zero was printed as a hyphen;
flagged 1 – 9 were printed as letter J – R; numeric blanks (with or without a flag) were printed as blanks. The
length of the line printed depended on the printer features: it was either 120 or 144 characters. The simulator
supports only a printer with 120 characters per line.

4.3 DN – Dump Numerically

4.3.1 DN to TTY

This instruction wrote all data characters from consecutive storage locations beginning with the P address.
The typewriter carriage automatically returned at the end of the margin. Output continued until either the
operator pressed the console Release key or the highest location of the storage module where the operation
started was reached. The highest address in a storage module is 19999, 39999, or 59999. All characters
including record marks and group marks were typed. No IBM documentation described what happened if
one of the four unusual characters mentioned above that are the result of reading a dollar sign, period,
comma or equal sign from a card was encountered.

4.3.2 DN to CDP

This instruction punched the characters from all storage locations beginning with the P address and
continuing through the highest address in the storage module where the operation started. If the last storage
location did not exactly fill a card, additional higher locations were punched to fill out the card. In this case, if
the starting address was in the highest storage module, additional characters were taken by wrapping
around to and continuing from address 00000. Numeric blanks were punched as blanks; flagged numeric
blanks were punched as blanks; flagged zeros produced only an 11 punch. . No IBM documentation
described what happened if one of the four unusual characters mentioned above that are the result of
reading a dollar sign, period, comma or equal sign from a card was encountered.

4.3.3 DN to PTP

This instruction caused storage locations beginning at the P address and continuing to the end of the
addressed storage module. At the end of the operation an EOL character was punched. Flagged zeros
produced only an X punch. No IBM documentation described what happened if one of the 4 unusual
characters mentioned above that are the result of reading a dollar sign, period, comma or equal sign from a
card was encountered.

4.3.4 DN to LPT

This instruction caused only one line to be printed. The printer buffer was filled (120 or 144 characters)
beginning at the P address location and continuing to higher locations. If the end of storage was
encountered before the buffer was full, the operation continued by wrapping around to location 00000.
Special translation took place for special characters. Digits were printed as described above for WN.
Numeric blank was printed as @, flagged numeric blank as *, record mark as ǂ, flagged record mark as W,
group mark as G, flagged group mark as X. This translation made it possible to dump storage and tell
exactly what was in every location. . No IBM documentation described what happened if one of the 4
unusual characters mentioned above that are the result of reading a dollar sign, period, comma or equal
sign from a card was encountered.

4.4 RA – Read Alphanumerically

4.4.1 RA to TTY

This instruction caused one line to be read from the console typewriter. All valid 1620 characters can be
entered. Each character typed caused two digits to be entered into storage. It is unclear (not documented
anywhere) if the actual 1620 supported input of flagged numeric blank, flagged record mark, or flagged
group mark. The instruction is complete when the Enter key is pressed.

The 1620-1 did not support backspace to correct a typing mistake. Each character entered was placed
directly into a pair of storage locations. The 1620-2 did support a correction key which typed an overstrike
character (–), and backed up the address in the OR-2 register by 2 so the next character could replace the
one just placed in storage. If the correction key was pressed multiple times, an overstrike character was
typed each time and the register decremented each time. If, for example, the operator typed EDN instead of
the intended END, use of the correction key would leave EDN– –ND on the console paper as a record of the
operator action. The simulator does not support this function.

4.4.2 RA to CDR

This instruction reads one card and places 160 digits into storage. All characters can be read. A card deck
could be duplicated by issuing RA to the reader and then issuing WA of the same data to the card punch.

4.4.3 RA to PTR

This instruction is similar to reading from a card reader except that a variable number of characters were
placed into storage. The operation continued until an EOL punch was detected in the tape. When this
happened, the operation stopped and an alphameric record mark (the two characters 0ǂ) were placed in
storage.

4.5 WA – Write Alphanumerically

4.5.1 WA to TTY

This instruction decoded two characters at a time and wrote each alphameric character on the typewriter.
The operation continued until a pair of digits was encountered that had the 8 and 2 bits on in the second of
the pair. This was usually 0ǂ but could have been anything followed by a record mark, group mark or one of
the unusual characters mentioned above that resulted from reading a dollar sign, period, comma or equal
sign from a card. All alphameric codes except 22 and those that contained a record mark or group mark
could be written.

4.5.2 WA to CDP

This instruction decoded two characters at a time and transferred each alphameric character to the card
punch buffer. This operation continued until 160 digits were processed and the corresponding 80 characters
had been transferred. All alphameric codes except 22 could be written.

4.5.3 WA to PTP

This instruction decoded two characters at a time and punched each alphameric character to paper tape.
The operation continued until a pair of digits was encountered that had the 8 and 2 bits on in the second of
the pair. This was usually 0ǂ but could be anything followed by a record mark, group mark or one of the
unusual characters mentioned above that resulted from reading a dollar sign, period, comma or equal sign
from a card. All alphameric codes except 22 and those that contained a record mark or group mark could be
written. The terminating character was not written but an EOL was punched in the tape.

4.5.4 WA to LPT

This instruction decoded two characters at a time and transferred each alphameric character to the line
printer buffer. The operation continued until a pair of digits was encountered that had the 8 and 2 bits one in

the second of the pair or until the print buffer was full. This was usually 0ǂ but could be anything followed by
a record mark, group mark or one of the unusual characters mentioned above that resulted from reading a
dollar sign, period, comma or equal sign from a card. All alphameric codes except those that contained a
record mark or group mark could be written. The printer was the only device that interpreted alphameric
code 22 and printed a record mark character (ǂ). This did not stop the operation. After the ending character
was detected, any remaining buffer positions were filled with blanks. It was important to always provide the
ending 0ǂ to stop the operation because, for reasons known only to IBM, the printer buffer was 197
characters long. Even though the printer could only print 120 or 144 characters on a line (depending on the
printer feature installed), it still tried to decode and transfer 197 characters. Omitting the ending character in
storage meant that the machine would process whatever followed the data to be printed and likely detect an
error because of an invalid code. This obscure feature is implemented by the simulator.

4.6 Read / Write Binary Paper Tape

The instructions RBPT (Read Binary Paper Tape) and WBPT (Write Binary Paper Tape) operated in a
manner similar to read and write alphanumerically. That is, two storage locations are transferred for each
column on paper tape. On reading, each column of tape is stored into two storage positions; on output each
pair of storage locations is punched as one column of tape. WBPT stops writing when it encounters a 0ǂ
combination in storage and an EOL is punched in the tape. RBPT reads data until it encounters an EOL on
the tape. Presumably, this caused a 0ǂ to be placed into storage to indicate the end of the data read;
however, the IBM documentation does not actually state that this is the case. The simulator does insert the
record mark when EOL is encountered.

