
Interdata 16b/32b Simulator Usage
01-Dec-2008

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2008, written by Robert M Supnik
Copyright (c) 1993-2008, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from Robert M Supnik.

1 Simulator Files ...3
2 Interdata Features..3

2.1 CPU (16b)...4
2.2 CPU (32b)...6
2.3 Selector Channel (SELCH0, SELCH1, SELCH2, SELCH3)8
2.4 Programmed I/O Devices ...8

2.4.1 Paper Tape Reader/Punch (PT) ..8
2.4.2 Console, Teletype Interface (TT) ...9
2.4.3 Console, PASLA Interface (TTP)...10
2.4.4 Line Printer (LPT) ..11
2.4.5 Line Frequency Clock (LFC)..12
2.4.6 Programmable Interval Clock (PIC) ...12
2.4.7 Floppy Disk Controller (FD) ...13
2.4.8 Programmable Asynchronous Line Adapters (PAS, PASL).........................13

2.5 Cartridge Disk Controller (DP) ..15
2.6 Mass Storage Module/Intelligent Disk Controller (DM)16
2.7 Magnetic Tape Controller (MT) ...17

3 Symbolic Display and Input..18
3.1 16b Instruction Input ...18
3.2 32b Instruction Input ...19

This memorandum documents the Interdata 16b and 32b simulators.

1 Simulator Files

sim/ scp.h
 sim_console.h
 sim_defs.h
 sim_fio.h
 sim_rev.h
 sim_sock.h
 sim_tape.h
 sim_timer.h
 sim_tmxr.h
 scp.c
 sim_console.c
 sim_fio.c
 sim_sock.c
 sim_tape.c
 sim_timer.c
 sim_tmxr.c

sim/interdata/ id_defs.h
 id16_cpu.c [id32_cpu.c]
 id16_dboot.c [id32_dboot.c]
 id_dp.c
 id_fd.c
 id_fp.c
 id_idc.c
 id_io.c
 id_lp.c
 id_mt.c
 id_pas.c
 id_pt.c
 id_tt.c
 id_ttp.c
 id_uvc.c
 id16_sys.c [id32_sys.c]

2 Interdata Features

The Interdata simulator includes simulators for a variety of 16b (I3, I4, I5, 70, 80, 7/16, 8/16, 8/16E) and 32b
(7/32, 8/32) models. This is by no means a complete sampling of all the variations in the Interdata/Perkin-
Elmer family. The 32b family included options for special communications instructions (7/32C, 8/32C), as
well as a later extension for virtual memory (3200 series).

The Interdata simulator is configured as follows:

device names simulates

CPU - 16b Interdata 3, 4, 5, 70, 80, 7/16, or 8/16 CPU with 64KB

 memory

 Interdata 8/16E CPU with 256KB memory

CPU - 32b Interdata 7/32 or 8/32 CPU with 1MB memory;

 8/32 supports 2 or 8 register banks

SELCH selector channel (1-4)

PT paper tape reader/punch

TT console terminal, Teletype interface

TTP console terminal, PASLA interface

LFC line frequency clock

PIC programmable interval clock

LPT line printer

FD floppy disk

DP 2.5MB/10MB cartridge disk with four disk drives

DM mass storage module (MSM)/intelligent (IDC) disk

 controller with four disk drives

MT magnetic tape

PAS programmable asynchronous line controller

PASL programmable asynchronous lines, up to 32

The Interdata simulator implements two unique stop conditions:

- Decode of an undefined instruction, and STOP_INST is set
- Runaway carriage control tape in the line printer

The LOAD command is used to load a carriage control tape for the line printer. The DUMP command is used

to dump a contiguous portion of memory as a self-loading bootstrap paper tape. The syntax for the DUMP

command is:

 DUMP <filename> lowaddr-highaddr

The low address must be greater than or equal to X'D0'.

Devices are assigned their default device numbers, as documented in the Interdata literature. Device
numbers can be changed by the command:

 SET <device> DEVNO=num

Device number conflicts are not checked until simulation starts. If there is a device number conflict,
simulation stops immediately with an error message.

Selector channel devices are assigned by default to selector channel 0. Selector channel assignments can
be changed by the command:

 SET <dev> SELCH=num

Selector channel assignments cannot introduce conflicts.

Most devices can be disabled and enabled, with the commands:

 SET <dev> DISABLED

 SET <dev> ENABLED

All devices are enabled by default.

2.1 CPU (16b)

The CPU options include memory size and CPU type:

 SET CPU I3 Interdata 3 (base instruction set)

 SET CPU I4 Interdata 4 (base plus single precision

 floating point)

 SET CPU 716 Interdata 7/16 (extended instruction set)

 (equivalent to Models 5, 70, and 80)

 SET CPU 816 Interdata 8/16 (extended plus double

 precision floating point)

 SET CPU 816E Interdata 8/16E (extended plus double

 precision plus expanded memory)

 SET CPU 8K set memory size = 8KB

 SET CPU 16K set memory size = 16KB

 SET CPU 24K set memory size = 24KB

 SET CPU 32K set memory size = 32KB

 SET CPU 48K set memory size = 48KB

 SET CPU 64K set memory size = 64KB

 SET CPU 128K set memory size = 128KB (8/16E only)

 SET CPU 256K set memory size = 256KB (8/16E only)

 SET CPU CONSINT assert console interrupt (7/16, 8/16,

 and 8/16E only)

If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator
asks for confirmation. Data in the truncated portion of memory is lost. Initial memory size is 64KB.

These switches are recognized when examining or depositing in CPU memory:

 -a examine/deposit ASCII characters

 -b examine/deposit bytes

 -c examine/deposit packed ASCII characters

 -f examine/deposit fullwords

 -d data radix is decimal

 -o data radix is octal

 -h data radix is hexadecimal

 -m examine as instruction mnemonics

 -v interpret address as virtual

Packed characters, halfwords, fullwords, and instructions must be aligned on a halfword (16b) boundary. If
an odd address is specified, the low order bit is ignored.

CPU registers include the visible state of the processor as well as the control registers for the interrupt
system.

 name size comments

 PC 16 program counter

 R0..R15 16 general registers

 FR0..F14 32 single precision floating point registers

 D0H..D14H 32 double precision floating point registers,

 high order

 D0L..D14L 32 double precision floating point registers,

 low order

 PSW 16 processor status word

 CC 4 condition codes, PSW<12:15>

 SR 16 switch register

 DR 32 display register low 16 bits

 DRX 8 display register extension

 DRMOD 1 display mode

 DRPOS 2 display pointer position

 SRPOS 1 switch pointer position

 IRQ[0:3] 32 interrupt requests

 IEN[0:3] 32 interrupt enables

 STOP_INST 1 stop on undefined instruction

 STOP_WAIT 1 stop if wait state and no I/O events pending

 PCQ[0:63] 16 PC prior to last branch or interrupt;

 most recent PC change first

 WRU 8 interrupt character

The CPU detects when the simulator is idle. When idle, the simulator does not use any resources on the
host system. Idle detection is controlled by the SET IDLE and SET NOIDLE commands:

 SET CPU IDLE enable idle detection

 SET CPU NOIDLE disable idle detection

Idle detection is disabled by default. The CPU is considered idle if the WAIT STATE flag is set in the PSW.

The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET

CPU HISTORY and SHOW CPU HISTORY commands:

 SET CPU HISTORY clear history buffer

 SET CPU HISTORY=0 disable history

 SET CPU HISTORY=n enable history, length = n

 SHOW CPU HISTORY print CPU history

 SHOW CPU HISTORY=n print first n entries of CPU history

The maximum length for the history is 65536 entries.

2.2 CPU (32b)

The CPU options include memory size and CPU type:

 SET CPU 732 Interdata 7/32, single precision floating

 point

 SET CPU DPFP Interdata 7/32, double precision floating

 point

 SET CPU 832 Interdata 8/32 (double precision floating

 point, 8 general register sets)

 SET CPU 2RS Interdata 8/32 (double precision floating

 point, 2 general register sets)

 SET CPU 64K set memory size = 64KB

 SET CPU 128K set memory size = 128KB

 SET CPU 256K set memory size = 256KB

 SET CPU 512K set memory size = 512KB

 SET CPU 1M set memory size = 1024KB

 SET CPU CONSINT assert console interrupt

If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator
asks for confirmation. Data in the truncated portion of memory is lost. Initial memory size is 1024KB.

These switches are recognized when examining or depositing in CPU memory:

 -a examine/deposit ASCII characters

 -b examine/deposit bytes

 -c examine/deposit packed ASCII characters

 -w examine/deposit halfwords

 -d data radix is decimal

 -o data radix is octal

 -h data radix is hexadecimal

 -m examine as instruction mnemonics

 -v interpret address as virtual

Packed characters, halfwords, fullwords, and instructions must be aligned on a halfword (16b) boundary. If
an odd address is specified, the low order bit is ignored.

CPU registers include the visible state of the processor as well as the control registers for the interrupt
system.

 name size comments

 PC 20 program counter

 R0..R15 32 active general register set

 GREG[32] 32 general register sets, 16 x 2

 FR0..FR14 32 single precision floating point registers

 D0H..D14H 32 double precision floating point registers,

 high order

 D0L..D14L 32 double precision floating point registers,

 low order

 PSW 16 processor status word

 CC 4 condition codes, PSW<12:15>

 SR 16 switch register

 DR 32 display register low 16 bits

 DRX 8 display register extension (x/16 only)

 DRMOD 1 display mode

 DRPOS 2 display pointer position

 SRPOS 1 switch pointer position

 MACREG[0:15] 32 memory access controller segment registers

 MACSTA 5 memory access controller interrupt status

 IRQ[0:3] 32 interrupt requests

 IEN[0:3] 32 interrupt enables

 STOP_INST 1 stop on undefined instruction

 STOP_WAIT 1 stop if wait state and no I/O events pending

 PCQ[0:63] 20 PC prior to last branch or interrupt;

 most recent PC change first

 WRU 8 interrupt character

The CPU detects when the simulator is idle. When idle, the simulator does not use any resources on the
host system. Idle detection is controlled by the SET IDLE and SET NOIDLE commands:

 SET CPU IDLE enable idle detection

 SET CPU NOIDLE disable idle detection

Idle detection is disabled by default. The CPU is considered idle if the WAIT STATE flag is set in the PSW.

The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET

CPU HISTORY and SHOW CPU HISTORY commands:

 SET CPU HISTORY clear history buffer

 SET CPU HISTORY=0 disable history

 SET CPU HISTORY=n enable history, length = n

 SHOW CPU HISTORY print CPU history

 SHOW CPU HISTORY=n print first n entries of CPU history

The maximum length for the history is 65536 entries.

2.3 Selector Channel (SELCH0, SELCH1, SELCH2, SELCH3)

An Interdata system can have 1 to 4 selector channels (SELCH0, SELCH1, SELCH2, SELCH3). The
default number of channels is 2. The number of channels can be changed with the command:

 SET SELCH CHANNELS=num

All the state for a selector channel can be displayed with the command:

 SHOW SELCH num

The selector channels implement these registers:

 name size comments

 SA[0:3] 20 start address, channels 0 to 3

 EA[0:3] 20 end address, channels 0 to 3

 CMD[0:3] 8 command, channels 0 to 3

 DEV[0:3] 8 active device, channels 0 to 3

 RDP[0:3] 2 read byte pointer, channels 0 to 3

 WDC[0:3] 3 write data counter, channels 0 to 3

 IREQ 4 interrupt requests; right to left,

 channels 0 to 3

 IENB 4 interrupt enables; right to left,

 channels 0 to 3

2.4 Programmed I/O Devices

2.4.1 Paper Tape Reader/Punch (PT)

The paper tape reader and punch (PT units 0 and 1) read data from or write data to disk files. The RPOS
and PPOS registers specify the number of the next data item to be read and written, respectively. Thus, by
changing RPOS or PPOS, the user can backspace or advance these devices.

The paper tape reader supports the BOOT command. BOOT PTR copies the so-called '50 loader' into

memory and starts it running.

The paper tape controller implements these registers:

 name size comments

 RBUF 8 reader buffer

 RPOS 32 reader position in the input file

 RTIME 24 time from reader start to interrupt

 RSTOP_IOE 1 reader stop on I/O error

 PBUF 8 punch buffer

 PPOS 32 punch position in the output file

 PTIME 24 time from punch start to interrupt

 PSTOP_IOE 1 punch stop on I/O error

 IREQ 1 paper tape interrupt request

 IENB 1 paper tape interrupt enable

 IARM 1 paper tape interrupt armed

 RD 1 paper tape read/write mode

 RUN 1 paper tape running

 SLEW 1 paper tape reader slew mode

 EOF 1 paper tape reader end of file

Error handling is as follows:

 type error STOP_IOE processed as

 in,out not attached 1 report error and stop

 0 out of tape

 in end of file 1 report error and stop

 0 out of tape

 in,out OS I/O error x report error and stop

2.4.2 Console, Teletype Interface (TT)

The Teletype keyboard (TT0) reads from the console keyboard; the Teletype printer (TT1) writes to the
simulator console window. The Teletype units (TT0, TT1) can be set to one of four modes, KSR, 7P, 7B, or
8B:

 mode input characters output characters

 KSR lower case converted lower case converted to upper case,

 to upper case, high-order bit cleared,

 high-order bit set non-printing characters suppressed

 7P high-order bit cleared high-order bit cleared,

 non-printing characters suppressed

 7B high-order bit cleared high-order bit cleared

 8B no changes no changes

Changing the mode of either unit changes both. The default mode is KSR.

The Teletype has a BREAK key, which is not present on today's keyboards. To simulate pressing the break
key, stop the simulator and use the command:

 SET TT BREAK

Break status will be asserted, and will remain asserted for the interval specified by KTIME.

The Teletype interface implements these registers:

 name size comments

 KBUF 8 input buffer

 KPOS 32 number of characters input

 KTIME 24 input polling interval (if 0, the keyboard

 is polled synchronously with the line clock)

 TBUF 8 output buffer

 TPOS 32 number of characters output

 TTIME 24 time from output start to interrupt

 IREQ 1 interrupt request

 IENB 1 interrupt enable

 IARM 1 interrupt armed

 RD 1 read/write mode

 FDPX 1 half-duplex

 CHP 1 input character pending

2.4.3 Console, PASLA Interface (TTP)

Later Interdata system connect the system console via the first PASLA interface rather than the Teletype
interface. The PASLA console can be simulated with a Telnet session on the first PAS line. Alternately, the
PASLA console can be attached to the simulator console window, using the TTP device in place of TT.

To switch the simulator console window to TTP, use the command:

 SET TTP ENABLED or

 SET TT DISABLED

Device TT is automatically disabled and device TTP is enabled. To switch the simulator console window
back to TT, use the command:

 SET TT ENABLED or

 SET TTP DISABLED

Device TTP is automatically disabled and device TT is enabled. If TTP is enabled at its default device
settings, the base address for the PAS multiplexer must be changed:

 SET PAS DEVNO=12

Otherwise, a device number conflict occurs.

The PASLA keyboard (TTP0) reads from the console keyboard; the PALSA printer (TTP1) writes to the
simulator console window. The PASLA units (TTP0, TTP1) can be set to one of four modes, UC, 7P, 7B, or
8B:

 mode input characters output characters

 UC lower case converted lower case converted to upper case,

 to upper case, high-order bit cleared,

 high-order bit cleared non-printing characters suppressed

 7P high-order bit cleared high-order bit cleared,

 non-printing characters suppressed

 7B high-order bit cleared high-order bit cleared

 8B no changes no changes

Changing the mode of either unit changes both. The default mode is 7B.

To simulate pressing the break key, stop the simulator and use the command:

 SET TTP BREAK

Break status will be asserted, and will remain asserted for the interval specified by KTIME.

The PASLA console interface implements these registers:

 name size comments

 CMD 16 command register

 STA 8 status register

 KBUF 8 input buffer

 KPOS 32 number of characters input

 KTIME 24 input polling interval (if 0, the keyboard

 is polled synchronously with the line clock)

 KIREQ 1 input interrupt request

 KIENB 1 input interrupt enabled

 KARM 1 input interrupt armed

 CHP 1 input character pending

 TBUF 8 output buffer

 TPOS 32 number of characters output

 TTIME 24 time from output start to interrupt

 TIREQ 1 output interrupt request

 TIENB 1 output interrupt enable

 TIARM 1 output interrupt armed

2.4.4 Line Printer (LPT)

The line printer (LPT) writes data to a disk file. The POS register specifies the number of the next data item
to be written. Thus, by changing POS, the user can backspace or advance the printer.

In addition, the line printer can be programmed with a carriage control tape. The LOAD command loads a

new carriage control tape:

 LOAD <file> load carriage control tape file

The format of a carriage control tape consists of multiple lines. Each line contains an optional repeat count,
enclosed in parentheses, optionally followed by a series of column numbers separated by commas. Column
numbers must be between 0 and 7; column seven is by convention top of form. The following are all legal
carriage control specifications:

 <blank line> no punch

 (5) 5 lines with no punches

 1,5,7 columns 1, 5, 7 punched

 (10)2 10 lines with column 2 punched

 0 column 0 punched

The default form is 1 line long, with all columns punched.

The line printer implements these registers:

 name size comments

 BUF 7 last data item processed

 BPTR 8 line buffer pointer

 LBUF[0:131] 7 line buffer

 VFUP 8 vertical forms unit pointer

 VFUL 8 vertical forms unit length

 VFUT[0:131] 8 vertical forms unit table

 IREQ 1 line printer interrupt request

 IENB 1 line printer interrupt enable

 IARM 1 line printer interrupt armed

 POS 32 position in the output file

 CTIME 24 character processing time

 STIME 24 spacing operation time

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 out of paper

 OS I/O error x report error and stop

2.4.5 Line Frequency Clock (LFC)

The line frequency clock (LFC) frequency can be adjusted as follows:

 SET LFC 60HZ set frequency to 60Hz

 SET LFC 50HZ set frequency to 50Hz

The default is 60Hz.

The line frequency clock implements these registers:

 name size comments

 IREQ 1 clock interrupt request

 IENB 1 clock interrupt enable

 IARM 1 clock interrupt armed

 TIME 24 clock frequency

The line frequency clock autocalibrates; the clock interval is adjusted up or down so that the clock tracks
actual elapsed time.

2.4.6 Programmable Interval Clock (PIC)

The programmable interval clock (PIC) implements these registers:

 name size comments

 BUF 16 output buffer

 RIC 16 reset interval and rate

 CIC 12 current interval

 DECR 10 current decrement value

 RDP 1 read byte select

 OVF 1 interval overflow flag

 IREQ 1 clock interrupt request

 IENB 1 clock interrupt enable

 IARM 1 clock interrupt armed

If the interval requested is an exact multiple of 1 millisecond, the programmable clock auto-calibrates; if not,
it counts instructions.

2.4.7 Floppy Disk Controller (FD)

Floppy disk options include the ability to make units write enabled or write locked.

 SET FDn LOCKED set unit n write locked

 SET FDn WRITEENABLED set unit n write enabled

Units can also be set ENABLED or DISABLED.

The floppy disk supports the BOOT command. BOOT FDn copies an autoload sequence into memory and

starts it running.

The floppy disk controller implements these registers:

 name size comments

 CMD 8 command

 STA 8 status

 BUF 8 buffer

 LRN 16 logical record number

 ESTA[0:5] 8 extended status bytes

 DBUF[0:127] 8 transfer buffer

 DBPTR 8 transfer buffer pointer

 IREQ 1 interrupt request

 IENB 1 interrupt enabled

 IARM 1 interrupt armed

 CTIME 24 command response time

 STIME 24 seek time, per cylinder

 XTIME 24 transfer time, per byte

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 disk not ready

Floppy disk data is buffered in memory; therefore, end of file and OS I/O errors cannot occur.

2.4.8 Programmable Asynchronous Line Adapters (PAS, PASL)

The Programmable Asynchronous Line Adapters (PAS and PASL) represent, indistinguishably, individual
PASLA interfaces, 2 line asynchronous multiplexers, and 8 line asynchronous multiplexers, with a maximum
of 32 lines. All the lines are modeled as a terminal multiplexer, with PAS as the multiplexer controller, and
PASL as the individual lines. The PASLAs perform input and output through Telnet sessions connected to a
user-specified port. The ATTACH command specifies the port to be used:

 ATTACH PAS <port> set up listening port

where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities.

Each line (each unit of PASL) can be set to one of four modes, UC, 7P, 7B, or 8B:

 mode input characters output characters

 UC lower case converted lower case converted to upper case,

 to upper case, high-order bit cleared,

 high-order bit cleared non-printing characters suppressed

 7P high-order bit cleared high-order bit cleared,

 non-printing characters suppressed

 7B high-order bit cleared high-order bit cleared

 8B no changes no changes

Each line (each unit of PASL) can also be set for modem control with the command SET PASLn DATASET.

The defaults are 7b mode and DATASET disabled. Finally, each line supports output logging. The SET

PASLn LOG command enables logging on a line:

 SET PASLn LOG=filename log output of line n to filename

The SET PASLn NOLOG command disables logging and closes the open log file, if any.

Once PAS is attached and the simulator is running, the terminals listen for connections on the specified port.
They assume that the incoming connections are Telnet connections. The connections remain open until
disconnected either by the Telnet client, a SET PAS DISCONNECT command, or a DETACH PAS command.

Other special PASLA commands:

SHOW PAS CONNECTIONS show current connections

SHOW PAS STATISTICS show statistics for active connections

SET PASLn DISCONNECT disconnects the specified line.

The controller (PAS) implements these registers:

 name size comments

 STA[0:31] 8 status, lines 0 to 31

 CMD[0:31] 16 command, lines 0 to 31

 RBUF[0:31] 8 receive buffer, lines 0 to 31

 XBUF[0:31] 8 transmit buffer, lines 0 to 31

 RIREQ 32 receive interrupt requests;

 right to left, lines 0 to 31

 RIENB 32 receive interrupt enables

 RARM[0:31] 1 receive interrupt armed

 XIREQ 32 transmit interrupt requests;

 right to left, lines 0 to 31

 XIENB 32 transmit interrupt enables

 XARM[0:31] 1 transmit interrupt armed

 RCHP[0:31] 1 receiver character present, lines 0 to 31

The lines (PASL) implements these registers:

 name size comments

 TIME[0:31] 24 transmit time, lines 0 to 31

The additional terminals do not support save and restore. All open connections are lost when the simulator
shuts down or PAS is detached.

2.5 Cartridge Disk Controller (DP)

Cartridge disk options include the ability to make units write enabled or write locked, and to select the type of
drive:

 SET DPn LOCKED set unit n write locked

 SET DPn WRITEENABLED set unit n write enabled

 SET DPn 2315 set unit n to 2315 (2.5MB)

 SET DPn 5440 set unit n to 5440 (10MB)

Units can also be set ENABLED or DISABLED.

The cartridge disk supports the BOOT command. To boot OS16/32, the hex form of the operating system

file's extension must be placed in locations 7E:7F. The disk bootstrap looks for a valid OS16/32 volume
descriptor in block 0, and uses that to locate the volume directory. It then searches the directory for a
filename of the form OS16xxxx.hhh or OS32xxxx.hhh, where the xxxx is ignored and hhh is the ASCII form
of the extension from locations 7E:7F. The 32b bootstrap can also boot Wollongong UNIX; locations 7E:7F
must be 0. The bootstrap normally boots from the first (removable) platter in a 5440; to boot from the
second (fixed) platter, use BOOT -F.

All drives have 256 8b bytes per sector. The other disk parameters are:

 drive cylinders surfaces sectors

 2315 203 2 24

 5440 408 4 12

The cartridge disk controller implements these registers:

 name size comments

 CMD 3 current command

 STA 8 controller status

 BUF 8 controller buffer

 HDSC 8 current head/sector select

 CYL 8 current cylinder select

 DBUF[0:255] 8 transfer buffer

 DBPTR 16 transfer buffer point

 DBLNT 16 transfer buffer length

 FIRST 1 first DMA service flag

 IREQ 5 interrupt requests; right-to-left,

 controller, drives 0 to 3

 IENB 5 interrupt enables

 IARM[0:3] 1 interrupts armed, drives 0 to 3

 STIME 24 seek latency, per cylinder

 RTIME 24 rotational latency, per sector

 WTIME 24 inter-word latency

Error handling is as follows:

 error processed as

 not attached disk not ready

 end of file assume rest of disk is zero

 OS I/O error report error and stop

2.6 Mass Storage Module/Intelligent Disk Controller (DM)

MSM/IDC disk controller options include the ability to make units write enabled or write locked, and to select
the type of drive:

 SET DMn LOCKED set unit n write locked

 SET DMn WRITEENABLED set unit n write enabled

 SET DMn MSM80 set unit n to storage module, 80MB

 (67MB formatted)

 SET DMn MSM300 set unit n to storage module, 300MB

 (262MB formatted)

 SET DMn MCCD16 set unit n to medium capacity, 16MB

 (13.5MB formatted)

 SET DMn MCCD48 set unit n to medium capacity, 48MB

 (40.5MB formatted)

 SET DMn MCCD80 set unit n to medium capacity, 80MB

 (67MB formatted)

 SET DMn MSM330F set unit n to storage module, 330MB

 (300MB formatted)

Units can also be set ENABLED or DISABLED.

The MSM/IDC controller supports the BOOT command. To boot OS16/32, the hex form of the operating

system file's extension must be placed in locations 7E:7F. The disk bootstrap looks for a valid OS16/32
volume descriptor in block 0, and uses that to locate the volume directory. It then searches the directory for
a filename of the form OS16xxxx.hhh or OS32xxxx.hhh, where the xxxx is ignored and hhh is the ASCII form
of the extension from locations 7E:7F. The 32b bootstrap can also boot Wollongong UNIX; locations 7E:7F
must be 0. Note that only the MSM80 and MSM300 drives can be bootstrapped; the boot code does not
recognize the other drives.

All drives have 256 8b bytes per sector. The other disk parameters are:

 Drive cylinders surfaces sectors

 MSM80 823 5 64

 MSM300 823 19 64

 MCCD16 823 1 64

 MCCD48 823 3 64

 MCCD80 823 5 64

 MSM300F 1024 16 64

The MSM/IDC disk controller implements these registers:

 name size comments

 STA 8 controller status

 BUF 8 controller buffer

 SEC 8 current sector select

 DBUF[0:767] 8 transfer buffer

 DBPTR 16 transfer buffer point

 DBLNT 16 transfer buffer length

 FIRST 1 first DMA service flag

 CWDPTR 2 controller write data byte pointer

 DWDPTR 1 drive write data byte pointer

 IREQ 5 interrupt requests; right-to-left,

 controller, drives 0 to 3

 IENB 5 interrupt enables

 SIREQ 5 saved interrupt requests

 ICARM 1 controller interrupt armed

 IDARM[0:3] 1 drive interrupts armed, drives 0 to 3

 STIME 24 seek latency, per cylinder

 RTIME 24 rotational latency, per sector

 WTIME 24 inter-word latency

Error handling is as follows:

 error processed as

 not attached disk not ready

 end of file assume rest of disk is zero

 OS I/O error report error and stop

2.7 Magnetic Tape Controller (MT)

Magnetic tape options include the ability to make units write enabled or write locked.

 SET MTn LOCKED set unit n write locked

 SET MTn WRITEENABLED set unit n write enabled

Magnetic tape units can be set to a specific reel capacity in MB, or to unlimited capacity:

 SET MTn CAPAC=m set unit n capacity to m MB (0 = unlimited)

 SHOW MTn CAPAC show unit n capacity in MB

Units can also be set ENABLED or DISABLED.

The magnetic tape supports the BOOT command. BOOT MTn copies an autoload sequence into memory

and starts it running.

The magnetic tape controller implements these registers:

 name size comments

 CMD 8 command

 STA 8 status

 BUF 8 buffer

 DBUF[0:65535] 8 transfer buffer

 DBPTR 16 transfer buffer pointer

 DBLNT 16 transfer buffer length

 XFR 1 transfer in progress flag

 FIRST 1 first DMA service flag

 IREQ 4 interrupt requests; right to left,

 drives 0 to 3

 IENB 4 interrupt enables

 IARM[0:3] 1 interrupts armed, drives 0 to 3

 STOP_IOE 1 stop on I/O error

 WTIME 1 word transfer time

 RTIME 1 interrecord latency

 UST[0:3] 8 unit status, drives 0 to 3

 POS[0:3] 32 tape position, drives 0 to 3

Error handling is as follows:

 error processed as

 not attached tape not ready; if STOP_IOE, stop

 end of file set error flag

 OS I/O error set error flag; if STOP_IOE, stop

3 Symbolic Display and Input

The Interdata simulator implements symbolic display and input. Display is controlled by command line
switches:

 -a display byte as ASCII character

 -c display halfword as two packed ASCII characters

 -m display instruction mnemonics

Input parsing is controlled by the first character typed in or by command line switches:

 ' or -a ASCII character

 " or -c two packed ASCII characters

 alphabetic instruction mnemonic

 numeric hexadecimal number

3.1 16b Instruction Input

Instruction input uses standard Interdata assembler syntax. There are seven instruction classes: short
branch, extended short branch, short immediate, register, register-register, memory, and register-memory.

Short branch instructions have the format

 sbop mask,address

where the mask is a hex (decimal) number between 0 and F (15), and the address is within +32 (forward
branch) or -32 (backward branch) of the current location.

Extended short branch instructions have the format

 sbxop address

where the address is within +32 or -32 of the current location. For extended short branches, the simulator
chooses the forward or backward direction automatically.

Short immediate instructions have the format

 siop regnum,immed

where the register number is a hex (decimal) number, optionally preceded by R, between 0 and F (15), and
the immediate is a hex digit between 0 and F.

Register instructions have the format

 rop regnum

where the register number is a hex (decimal) number, optionally preceded by R, between 0 and F (15).

Register-register instructions have the format

 rrop regnum,regnum

where the register numbers are hex (decimal) numbers, optionally preceded by R, between 0 and F (15).

Memory instructions have the format

 mop address{(index)}

where address is a hex number between 0 and 0xFFFF, and the index register is a hex (decimal) number,
optionally preceded by R, between 1 and F (15).

Register-memory instructions have the format

 rmop regnum,address{(index)}

where the register number is a hex (decimal) number, optionally preceded by R, between 0 and F (15), the
address is a hex number between 0 and 0xFFFF, and the index register is a hex (decimal) number,
optionally preceded by R, between 1 and F (15).

3.2 32b Instruction Input

Instruction input uses standard Interdata assembler syntax. There are nine instruction classes: short
branch, extended short branch, short immediate, 16b immediate, 32b immediate, register, register-register,
memory, and register-memory. Addresses, where required, can be specified as either absolute numbers or
relative to the current location (.+n or .-n).

Short branch instructions have the format

 sbop mask,address

where the mask is a hex (decimal) number between 0 and F (15), and the address is within +32 (forward
branch) or -32 (backward branch) of the current location.

Extended short branch instructions have the format

 sbxop address

where the address is within +32 or -32 of the current location. For extended short branches, the simulator
chooses the forward or backward direction automatically.

Short immediate instructions have the format

 siop regnum,immed

where the register number is a hex (decimal) number, optionally preceded by R, between 0 and F (15), and
the immediate is a hex digit between 0 and F.

16b immediate instructions have the format

 i16op regnum,immed16{(index)}

where the register number is a hex (decimal) number, optionally preceded by R, between 0 and F (15), the
immediate is a hex number between 0 and 0xFFFF, and the index register is a hex (decimal) number,
optionally preceded by R, between 1 and F (15).

32b immediate instructions have the format

 i32op regnum,immed32{(index)}

where the register number is a hex (decimal) number, optionally preceded by R, between 0 and F (15), the
immediate is a hex number between 0 and 0xFFFFFFFF, and the index register is a hex (decimal) number,
optionally preceded by R, between 1 and F (15).

Register instructions have the format

 rop regnum

where the register number is a hex (decimal) number, optionally preceded by R, between 0 and F (15).

Register-register instructions have the format

 rrop regnum,regnum

where the register numbers are hex (decimal) numbers, optionally preceded by R, between 0 and F (15).

Memory instructions have the format

 mop address{(index)} or

 mop address{(index1,index2)}

where address is a hex number between 0 and 0xFFFF, and the index registers are hex (decimal) numbers,
optionally preceded by R, between 1 and F (15).

Register-memory instructions have the format

 rmop regnum,address{(index)} or

 rmop regnum,address{(index1,index2)}

where the register number is a hex (decimal) number, optionally preceded by R, between 0 and F (15), the
address is a hex number between 0 and 0xFFFF, and the index registers are hex (decimal) numbers,
optionally preceded by R, between 1 and F (15).

For memory operands, the simulator automatically chooses the format (RX1, RX2, RX3) that consumes the
fewest bytes. If both RX1 and RX2 are feasible, the simulator chooses RX1.

