PDP-1 Simulator Usage 13-Jul-2016

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2016, written by Robert M Supnik Copyright (c) 1993-2016, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik.

1	Simula	ator Files	3
2	PDP-1	Features	3
2	.1 C	PU	4
2	.2 P	rogrammed I/O Devices	5
	2.2.1	Paper Tape Reader (PTR)	5
	2.2.2	Paper Tape Punch (PTP)	6
	2.2.3	Console Typewriter Input (TTI), Output (TTO)	7
	2.2.4	Type 62 Line Printer (LPT)	7
	2.2.5	Type 550/555 Microtape (DECtape) (DT)	8
	2.2.6	PDP-1D Timesharing Clock (CLK)	9
	2.2.7	Type 630 Data Communications Subsystem (DCS, DCSL)	9
2	.3 D	rums	
	2.3.1	Type 24 Serial Drum (DRM)	10
	2.3.2	Type 23 Parallel Drum (DRP)	11
3	Symbo	blic Display and Input	11
4	Chara	cter Sets	12

This memorandum documents the PDP-1 simulator.

1 Simulator Files

scp.h

sim/

sim_console.h sim defs.h sim_fio.h sim rev.h sim_sock.h sim_timer.h sim_tmxr.h scp.c sim_console.c sim fio.c sim_sock.c sim_timer.c sim_tmxr.c sim/pdp1/ pdp1_defs.h pdp1_clk.c pdp1_cpu.c pdp1_dcs.c pdp1_drm.c pdp1_dt.c pdp1_lp.c pdp1_stddev.c pdp1_sys.c

2 PDP-1 Features

The PDP-1 is configured as follows:

device name(s)	simulates
СРИ	PDP-1 CPU with up to 64KW of memory optional automatic multiply/divide optional 16-channel sequence break system optional PDP-1D extended features
CLK	1Khz time-sharing clock (PDP-1D)
PTR, PTP	integral paper tape reader/punch
TTI,TTO	console typewriter
LPT	Type 62 line printer
DRM	Type 24 serial drum
DRP	Type 23 parallel drum
DT	Type 550 Microtape (DECtape)
DCS,DCSL	Type 630 Data Communications Subsystem

The PDP-1 simulator implements the following unique stop conditions:

- An unimplemented instruction is decoded, and register STOP_INST is set

- More than IND_MAX indirect addresses are detected during memory reference address decoding
- More than XCT_MAX nested executes are detected during instruction execution
- I/O wait, and no I/O operations outstanding (i.e, no I/O completion will ever occur)
- A simulated DECtape runs off the end of its reel

The LOAD command supports RIM format tapes and BLK format tapes. If the file to be loaded has an extension of .BIN, or switch -B is specified, the file is assumed to be BLK format; otherwise, it defaults to RIM format. LOAD takes an optional argument that specifies the starting address of the field to be loaded:

LOAD lisp.rim	load RIM format file lisp.rim
LOAD ddt.rim 70000	load RIM format file ddt.rim into
	the field starting at 70000
LOAD -B macro.blk	load BLK format file macro.blk

The DUMP command is not implemented.

2.1 CPU

The only CPU options are the presence of hardware multiply/divide and the size of main memory.

SET	CPU	MDV	enable multiply/divide
SET	CPU	NOMDV	disable multiply/divide
SET	CPU	SBS16	enable 16-channel sequence break system
SET	CPU	NOSBS16	disable 16-channel sequence break system
SET	CPU	PDP1C	set CPU to standard PDP-1C
SET	CPU	PDP1DS45	set CPU to PDP-1D, serial# 45 (BBN)
SET	CPU	PDP1DS48	<pre>set CPU to PDP-1D, serial# 48 (Stanford)</pre>
SET	CPU	4K	set memory size = 4K
SET	CPU	8K	set memory size = 8K
SET	CPU	12K	set memory size = 12K
SET	CPU	16K	set memory size = 16K
SET	CPU	20K	set memory size = 20K
SET	CPU	24K	set memory size = 24K
SET	CPU	28K	set memory size = 28K
SET	CPU	32K	set memory size = 32K
SET	CPU	48K	set memory size = 48K
SET	CPU	64K	set memory size = 64K

If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator asks for confirmation. Data in the truncated portion of memory is lost. Initial memory size is 64K. Setting the CPU to PDP-1D also enables multiply/divide and the 16-channel sequence break system.

CPU registers include the visible state of the processor as well as the control registers for the interrupt system.

size	comments
16	program counter
18	IO register
1	overflow flag
6	<pre>program flags<1:6></pre>
6	<pre>sense switches<1:6></pre>
16	address switches
	size 16 18 18 1 6 6 16

ТW	18	test word (front panel switches)
EXTM	1	extend mode
RNGM	1	ring mode (PDP-1D only)
L	1	link (PDP-1D #45 only)
RM	1	restrict mode (PDP-1D)
RMASK	1	restrict memory mask (PDP-1D)
RTB	18	<pre>restrict trap buffer (PDP-1D #45 only)</pre>
RNAME [0:3]	2	rename map (PDP-1D #45 only)
IOSTA	18	IO status register
SBON	1	sequence break enable
SBRQ	1	sequence break request
SBIP	1	sequence break in progress
SBSREQ	16	pending sequence break requests
SBSENB	16	enabled sequence break levels
SBSACT	16	active sequence break levels
IOH	1	I/O halt in progress
IOS	1	I/O synchronizer (completion)
PCQ[0:63]	16	PC prior to last jump or interrupt;
		most recent PC change first
STOP_INST	1	stop on undefined instruction
SBS_INIT	1	initial state of sequence break enable
EXTM_INIT	1	initial state of extend mode
XCT_MAX	8	maximum XCT chain
IND_MAX	8	maximum nested indirect addresses
WRU	8	interrupt character

The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET CPU HISTORY and SHOW CPU HISTORY commands:

SET CPU HISTORY	clear history buffer
SET CPU HISTORY=0	disable history
SET CPU HISTORY=n	enable history, length = n
SHOW CPU HISTORY	print CPU history
SHOW CPU HISTORY=n	print first n entries of CPU history

The maximum length for the history is 65536 entries.

If the 16-channel sequence break system is enabled, devices can be assigned to any break level between 0 (the default) and 15, with the following command:

SET <dev> SBSLVL=n assign device to sequence break level n

Because each PDP-1 configuration was unique, there are no default assignments for the 16-channel sequence break system.

2.2 Programmed I/O Devices

2.2.1 Paper Tape Reader (PTR)

The paper tape reader (PTR) reads data from or a disk file. The POS register specifies the number of the next data item to be read. Thus, by changing POS, the user can backspace or advance the reader.

The paper tape reader supports the BOOT command. BOOT PTR copies the RIM loader into memory and starts it running. BOOT PTR loads into the field selected by TA<0:3> (the high order four bits of the address switches).

The paper tape reader recognizes one switch at ATTACH time:

ATT -A PTR <file> convert input characters from ASCII

By default, the paper tape reader does no conversions on input characters.

The paper tape reader implements these registers:

name	size	comments
BUF	8	last data item processed
DONE	1	device done flag
RPLS	1	return restart pulse flag
POS	32	position in the input file
TIME	24	time from I/O initiation to interrupt
STOP IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of tape
end of file	1 0	report error and stop out of tape
OS I/O error	x	report error and stop

2.2.2 Paper Tape Punch (PTP)

The paper tape punch (PTP) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the punch.

The paper tape punch recognizes one switch at ATTACH time:

ATT -A PTP <file> output characters as ASCII text

By default, the paper tape punch punches files with no conversions.

The paper tape punch implements these registers:

BUF8last data item processedDONE1device done flagRPLS1return restart pulse flagPOS32position in the output file	name
DONE1device done flagRPLS1return restart pulse flagPOS32position in the output file	BUF
RPLS1return restart pulse flagPOS32position in the output file	DONE
POS 32 position in the output file	RPLS
	POS
TIME 24 time from 1/0 initiation to interrup	TIME
STOP_IOE 1 stop on I/O error	STOP_IOE

Error handling is as follows:

```
error STOP_IOE processed as
```

not	t attached	1 0	report out of	error tape	and	stop
OS	I/O error	x	report	error	and	stop

2.2.3 Console Typewriter Input (TTI), Output (TTO)

The Typewriter is a half-duplex electric typewriter (originally a Friden Flexowriter, later a Sorobon-modified IBM B). It has only a single buffer and a single carriage state but distinct input and output done and interrupt flags. The typewriter input (TTI) polls the console keyboard for input. The typewriter output (TTO) writes to the simulator console window.

The Typewriter recognizes one option:

SET	TTO	ET	Expensive	Typewriter	mode
SET	TTO	NOET	normal mo	de	

In Expensive Typewriter mode, ribbon changes are output as strings ([red], [black]) to indicate which mode the program is in (red for command, black for text). In normal mode, ribbon changes are ignored.

The typewriter input implements these registers:

BUF6typewriter buffer (shared)UC1upper case/lower case state (sharDONE1input ready flagPOS32number of characters inputTIME24keyboard polling interval	ed)

The typewriter output implements these registers:

name	size	comments
BUF	6	typewriter buffer (shared)
UC	1	upper case/lower case state (shared)
RPLS	1	return restart pulse flag
DONE	1	output done flag
POS	32	number of characters output
TIME	24	time from I/O initiation to interrupt

2.2.4 Type 62 Line Printer (LPT)

The line printer (LPT) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the printer.

The line printer can be disabled and enabled with the SET LPT DISABLED and SET LPT ENABLED commands, respectively.

The line printer implements these registers:

name	size	comme	nts		
BUF	8	last	data	item	processed

PNT	1	printing done flag
SPC	1	spacing done flag
RPLS	1	return restart pulse flag
BPTR	6	print buffer pointer
POS	32	position in the output file
TIME	24	time from I/O initiation to interrupt
STOP IOE	1	stop on I/O error
LBUF[0:119]	8	line buffer

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of tape or paper
OS I/O error	x	report error and stop

2.2.5 Type 550/555 Microtape (DECtape) (DT)

The PDP-1 uses the Type 550 Microtape (later renamed DECtape), a programmed I/O controller. PDP-1 DECtape format has 4 18b words in its block headers and trailers.

DECtapes drives are numbered 1-8; in the simulator, drive 8 is unit 0. DECtape options include the ability to make units write enabled or write locked.

SET	DTn	WRITEENABLED	set	unit	n	write	enabled
SET	DTn	LOCKED	set	unit	n	write	locked

Units can also be set ENABLED or DISABLED.

The DECtape controller can be disabled and enabled with the SET DT DISABLED and SET DT ENABLED commands, respectively.

The Type 550 supports PDP-8 format, PDP-11 format, and 18b format DECtape images. ATTACH assumes the image is in 18b format; the user can other choices with switches:

-t	PDP-8 format
-s	PDP-11 format
-a	autoselect based on file size

The DECtape controller is a data-only simulator; the timing and mark track, and block header and trailer, are not stored. Thus, the WRITE TIMING AND MARK TRACK function is not supported; the READ ALL function always returns the hardware standard block header and trailer; and the WRITE ALL function dumps non-data words into the bit bucket.

The DECtape controller implements these registers:

name	size	comments
DTSA	12	status register A
DTSB	12	status register B
DTDB	18	data buffer
DTF	1	DECtape flag
BEF	1	block end flag

ERF	1	error flag
LTIME	31	time between lines
DCTIME	31	time to decelerate to a full stop
SUBSTATE	2	read/write command substate
POS[0:7]	32	position, in lines, units 0-7
STATT[0:7]	18	unit state, units 0-7
STOP OFFR	1	stop on off-reel error

It is critically important to maintain certain timing relationships among the DECtape parameters, or the DECtape simulator will fail to operate correctly.

- LTIME must be at least 6
- DCTIME needs to be at least 100 times LTIME

Acceleration time is set to 75% of deceleration time.

2.2.6 PDP-1D Timesharing Clock (CLK)

The PDP-1D implements a timesharing clock, which operates at 1Khz. The clock has a readable counter and generates interrupts at 32 ms and 1 minute intervals. There is no other visible state. The clock is disabled by default.

The clock implements these registers:

name	size	comments	
CNTR	16	clock counter, range	0-5999910

The clock requires the 16-channel sequence break system and is assigned to two different SBS levels:

SET	CLK	SBS32MS=n	assign	32	msec	interrupt	to	SBS	level	n
SET	CLK	SBS1MIN=n	assign	1	minute	interrupt	t t	> SBS	level	_ n

2.2.7 Type 630 Data Communications Subsystem (DCS, DCSL)

The Type 630 Data Communications Subsystem provides up to 32 asynchronous interfaces. The Type 630 consists of two independent devices: DCS for the scanner, and DCSL for the individual lines. The terminal multiplexer performs input and output through Telnet sessions connected to a user-specified port. The ATTACH command specifies the port to be used:

ATTACH DCS <port> set up listening port

where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities. The number of lines can be changed with SET DCL LINES command:

SET DCS LINES=n set number of lines to n, where n is 1-32

Each line (each of unit of DCSL) can be set to one of four modes: UC, 7P, 7B, or 8B.

mode	input characters	output characters
UC	lower case converted	lower case converted to upper case,
	to upper case,	high-order bit cleared,
	high-order bit cleared	non-printing characters suppressed
7P	high-order bit cleared	high-order bit cleared,

		non-printing characters suppressed
7B	high-order bit cleared	high-order bit cleared
8B	no changes	no changes

The default mode is UC. Finally, each line supports output logging. The SET DCSLn LOG command enables logging on a line:

SET DCSLn LOG=filename log output of line n to filename

The SET DCSLn NOLOG command disables logging and closes the open log file, if any.

Once DCS is attached and the simulator is running, the multiplexer listens for connections on the specified port. It assumes that the incoming connections are Telnet connections. The connections remain open until disconnected either by the Telnet client, a SET DCS DISCONNECT command, or a DETACH DCS command.

Other special commands:

SHOW	DCS	CONNECTIONS	show	current	c cor	nnect	cions	
SHOW	DCS	STATISTICS	show	statist	tics	for	active	connections
SET I	DCSLn	DISCONNECT	disco	onnects	the	spec	cified	line.

The multiplexer scanner (DCS) implements these registers:

name	size	comments
BUF[0:31]	8	input buffer, lines 0 to 31
FLG[0:31]	1	line ready flag, lines 0 to 31
SCNF	1	scanner ready flag
SCAN	5	scanner line number
SEND	5	output line number

The individual lines (DCSL) implement these registers:

name	size	comments
TIME[0:31]	24	time from I/O initiation to interrupt, lines 0 to 31

The multiplexer does not support save and restore. All open connections are lost when the simulator shuts down or DSC is detached.

2.3 Drums

The PDP-1 supports two drums: the Type 23 parallel drum (DRP) and the Type 24 serial drum (DRM). Both use device addresses 061-064; accordingly, only one can be enabled at a time. By default, the Type 24 serial drum is enabled, and the Type 23 parallel drum is disabled. The PDP-1D requires the Type 23 parallel drum.

2.3.1 Type 24 Serial Drum (DRM)

The serial drum (DRM) implements these registers:

name	size	comments
DA	9	drum address (sector number)

MA	16	current memory address
DONE	1	device done flag
ERR	1	error flag
WLK	32	write lock switches
TIME	24	rotational latency, per word
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop drum not ready

Drum data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur.

2.3.2 Type 23 Parallel Drum (DRP)

The parallel drum (DRP) implements these registers:

name	size	comments
ТА	12	track address
RDF	5	read field
RDE	1	read enable flag
WRF	5	write field
WRF	1	write enable flag
MA	16	current memory address
WC	12	word count
BUSY	1	device busy flag
ERR	1	error flag
TIME	24	rotational latency, per word
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1	report error and stop
	0	drum not ready

Drum data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur.

3 Symbolic Display and Input

The PDP-1 simulator implements symbolic display and input. Display is controlled by command line switches:

-a	display	as	ASCII	charact	cer	
-c	display	as	three	packed	FIODEC	characters
-m	display	ins	structi	ion mner	nonics	

Input parsing is controlled by the first character typed in or by command line switches:

' or -a	ASCII character
" or -c	three packed FIODEC characters
alphabetic	instruction mnemonic
numeric	octal number

Instruction input uses modified PDP-1 assembler syntax. There are six instruction classes: memory reference, shift, skip, operate, IOT, and LAW.

Memory reference instructions have the format

memref {I} address

where I signifies indirect reference. The address is an octal number in the range 0 - 0177777.

Shift instructions have the format

shift shift_count

The shift count is an octal number in the range 0-9.

Skip instructions consist of single mnemonics, eg, SZA, SZS4. Skip instructions may be or'd together

skip skip skip...

The sense of a skip can be inverted by including the mnemonic I.

Operate instructions consist of single mnemonics, eg, CLA, CLI. Operate instructions may be or'd together

opr opr opr...

IOT instructions consist of single mnemonics, eg, TYI, TYO. IOT instructions may include an octal numeric modifier or the modifier I:

iot modifier

The simulator does not check the legality of skip, operate, or IOT combinations.

Finally, the LAW instruction has the format

LAW {I} immediate

where immediate is in the range 0 to 07777.

4 Character Sets

The PDP-1's first console was a Frieden Flexowriter; its character encoding was known as FIODEC. The PDP-1's line printer used a modified Hollerith character set. The following table provides equivalences between ASCII characters and the PDP-1's I/O devices. In the console table, UC stands for upper case. The console table also applies to ASCII mode for the paper tape reader and punch.

	PDP-1	PDP-1
ASCII	console	line printer
000 - 007	none	none

bs	075	none
tab	036	none
012 - 013	none	none
ff	013	none
cr	077	none
016 - 037	none	none
space	000	000
!	{OR} UC+005	none
"	UC+001	none
#	{IMPLIES} UC+004	none
\$	none	none
010	none	none
&	{AND} UC+006	none
	UC+002	none
(057	057
)	055	055
*	{TIMES} UC+073	072
+	002	074
,	033	033
-	054	054
•	0/3	0/3
/	021	021
0	020	020
	001	001
2	002	002
3	003	003
4 5	004	004
5	005	005
7	007	000
, 8	010	010
9	011	010
•	none	none
•	none	none
, <		034
=	UC+033	053
>	UC+010	034
?	UC+021	037
a	{MID DOT} 040	{MID DOT} 040
A	UC+061	061
В	UC+062	062
С	UC+063	063
D	UC+064	064
E	UC+065	065
F	UC+066	066
G	UC+067	067
Н	UC+070	070
I	UC+071	071
J	UC+041	041
K	UC+042	042
L	UC+043	043
М	UC+044	044
N	UC+045	045
0	UC+046	046
Р	UC+047	047
Q	UC+050	050
R	UC+051	051

S	UC+022		022	
Т	UC+023		023	
U	UC+024		024	
V	UC+025		025	
W	UC+026		026	
Х	UC+027		027	
Y	UC+030		030	
Z	UC+031		031	
[UC+057		none	
\setminus	{OVERLINE}	056	{OVERLINE}	056
]	UC+055		none	
^	{UP ARROW}	UC+011	{UP ARROW}	035
	UC+040		UC+040	
~	{RT ARROW}	UC+020	036	
a	061		none	
b	062		none	
С	063		none	
d	064		none	
е	065		none	
f	066		none	
a	067		none	
h	070		none	
i	071		none	
i	041		none	
k	042		none	
l	043		none	
m	044		none	
n	045		none	
0	046		none	
q	047		none	
a	050		none	
r	051		none	
S	022		none	
t	023		none	
u	024		none	
v	025		none	
W	026		none	
x	027		none	
V	030		none	
Z	031		none	
{	none		none	
	UC+056		076	
}	none		none	
~	UC+003		013	
del	075		none	